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Abstract. For domains with sufficient structure and regularity, geometric multigrid solvers are6
among the fastest for computing the numerical solution to elliptic PDEs; however, for complicated7
domains, constructing a suitable hierarchy of meshes becomes challenging. We propose a framework8
for mapping computations from such complex domains to a regular computational domain via diffeo-9
morphism, enabling the use of black-box multigrid. This mapping facilitates regular memory accesses10
during solves, improving efficiency and scalability, especially on massively parallel processors such11
as GPUs. Moreover, we show that the diffeomorphic mapping itself may be approximately learned12
using an invertible neural network, enabling automated application to geometries where no analytic13
mapping exists.14
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1. Introduction. Geometric multigrid methods are among the fastest iterative17

methods for elliptic partial differential equations (PDEs), offering an optimal time18

complexity and rapid convergence for problems where geometric structure can be19

exploited. However, extending these for arbitrary complicated domains remains chal-20

lenging due to the difficulty of constructing a suitable hierarchy of coarse meshes that21

maintains multigrid efficiency. In practice, algebraic multigrid methods [12] (AMG)22

are often used on complex meshes as they do not require geometric information about23

the problem, but rather operate on the underlying linear system itself. Despite their24

versability, however, AMG tends to suffer from a higher setup cost as more expensive25

graph algorithms must be employed to coarsen the problem. Morever, they suffer from26

poor data locality and irregular data accesses resulting from inefficient sparse matrix27

memory access patterns that hinder performance on massively parallel architectures28

such as GPUs [2].29

To address these limitations, we propose a novel framework to extend the raw30

power and speed of geometric multigrid to a larger class of problems. Solutions are31

transferred from complex geometries to a more simple, structured mesh through a32

specified diffeomorphic mapping. A full multigrid hierarchy is constructed by trans-33

ferring solution vectors from the unstructured mesh to the structured one and then34

employing a black-box multigrid solver [4, 5, 11] to quickly and efficiently solve the35

structured problem. This auxiliary solution is then transferred back to the unstruc-36

tured mesh where only cheap local relaxation is performed. This results in a solver37

that leverages the regularity of the structured problem to enable an efficient solver38

while also allowing for essential features of the physical geometry to be preserved.39

Furthermore, we show that it is possible for this diffeomorphic mapping between40

domains to be learned. By taking inspiration from existing work on large deforma-41

tion diffeomorphic metric mappings [8] (LDDMMs), used heavily in computational42
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anatomy, we demonstrate that such a mapping can be approximately learned for43

geometries lacking an analytic conformal mapping. We show numerical results for44

analytic mappings and preliminary results for learned mappings, indicating that geo-45

metric solvers constructed by our method are competitive with off the shelf algebraic46

multigrid solvers such as HYPRE [9].47

2. Method Overview. The PDE we are considering in this work is the elliptic48

diffusion problem with Dirichlet boundary conditions,49

−∇ · D∇u = f in Ωp,(2.1)50

u = g on ∂Ωp,(2.2)51

defined over some polygonal physical domain Ωp = ∪|Tp|
i=1τ

i
p ⊂ Rd with triangulation52

Tp =
{
τ ip
}
, and SPD diffusion coefficient D : Rd → Rd. We will discuss the case of53

d = 2, though the method presented can be generalized to d = 3 as well.54

In addition to the physical domain, we will define an auxiliary computational55

domain, Ωc = [−1, 1]d, as well as a diffeomorphism T : Ωp 7→ Ωc to map functions56

between the two domains. We require T to be diffeomorphic to ensure the Jacobian57

JT (x) and its inverse exist and are continuous.58

We use this auxiliary domain to transfer both functions in the weak form and59

discrete vectors in the solution process. This has several benefits, mainly:60

1. Geometric multigrid on a square domain is cheap to setup and run, and61

2. memory access patterns are much more regular than on an unstructured mesh,62

giving a speedup on compute platforms that have performance bottlenecks63

resulting from memory transfers, rather than raw compute power, such as64

GPUs.65

We will first consider example domains where T is known analytically, though in66

section 3 we will show how T can be learned for more complex domains.67

The PDE is discretized on the computational domain by finite elements through68

a change of coordinates defined by T , in a similar fashion to how a standard finite69

element assembly is performed on, e.g., a triangular mesh. We begin with the regular70

weak form for the diffusion equation, we wish to find û ∈ H1
0 (Ωp) for the solution71

u(x) = û(x) + ĝ(x) that satisfies72

(2.3)

∫
Ωp

D∇u · ∇v dA =

∫
Ωp

fv dA ∀v ∈ H1
0 (Ωp),73

where H1(Ωp) is the standard Hilbert space of continuous functions over Ωp, H
1
0 (Ωp)74

is the restriction of H1(Ωp) to functions that vanish on the boundary, and ĝ ∈ H1(Ωp)75

satisfies ĝ(x) = g on ∂Ωp. We then transfer this weak form to Ωc with JT to obtain76

(2.4)

∫
Ωc

(DJT
T ∇u) · (JT

T ∇v) |J−1
T | dA =

∫
Ωc

fv |J−1
T | dA ∀v ∈ H1

0 (Ωc).77

The computational domain is then “meshed” into a logically structured grid of regular78

elements Tc =
{
τ ic
}
. Letting the reference element be defined by τ̂c = [0, 1]d and the79

Jacobian of element τ ci by Jτc
i
, we obtain the final weak form80

|Tc|∑
i=1

|Jτ i
c
|
∫
τ̂c

(DJT
T J−T

τ i
c
∇u) · (JT

T J−T
τ i
c
∇v) |J−1

T | dA =

|Tc|∑
i=1

|Jτ i
c
|
∫
τ̂c

fv |J−1
T | dA

∀v ∈ H1
0 (τ̂c).

(2.5)81

82
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Remark. In the above weak form, we have inverse element Jacobians as we trans-83

form from Ωc to the reference element space (opposite of the element transform), and84

we have a regular Jacobian of T as we transform from Ωp to Ωc, which follows the85

definition of T .86

Equation (2.5) is then discretized by restricting the test and trial function spaces87

to a standard Q1 bilinear basis,88

(2.6) ϕ(x, y) =
[
(1− x)(1− y) x(1− y) (1− x)y xy

]T
.89

We then approximate the integrals in (2.5) and assemble a linear system Ac as is90

standard for finite elements; in practice the quadrature rule for integration does not91

need to be of very high order (midpoint or trapezoidal rule in each dimension is often92

sufficient) in order to obtain a convergent method.93

While in the above formulation it is possible to have rectangular meshes with94

variable grid spacing (for example, a Shishkin mesh [13]), we will for simplicity use95

computational meshes with uniform grid spacing ∆x,∆y, giving element Jacobians96

Jτc
1
= Jτc

2
= · · · = Jc.97

Definition 2.1 (Effective anisotropy). Let the effective anisotropy, Deff : Ωc →98

Rd×d, mapping coordinates on the reference quad to a diffusion tensor, be defined by99

(2.7) Deff(x) := J−1
c JTD(T−1(x))JT

T J−T
c = JTD(T−1(x))JT

T ⊙ (jcj
T
c ),100

where jc :=
[ 1
∆x

1
∆y

]T
, Jc := diag(jc)

−1 is the diagonal anisotropy resulting from101

the aspect ratio of the discretization of the computational domain, and ⊙ is the en-102

trywise Hadamard product.103

Remark. If the Jacobian of the map T is poorly conditioned, the overall condi-104

tioning of Deff can potentially be improved by changing the grid aspect ratio, as the105

element size will scale the rows and columns accordingly.106

2.1. Interpolation. The diffeomorphism T allows one to transfer continuous107

functions between the physical and computational domains, though a discrete analog108

is now needed to transfer solution vectors to numerically solve the PDE. LetNc andNp109

denote the number of vertices in the computational and physical meshes, respectively.110

To transfer discrete solution vectors, we will define an interpolation operator P ∈111

RNc×Np , analogously to coarse-to-fine interpolation in multigrid. We then define the112

entries of P by mapping the vertices of the physical mesh, xp
i , to the computational113

domain using T , then computing interpolation coefficients by evaluating local bilinear114

basis functions, (2.6).115

For example, if the image of T (xi
p) lies within element τj on the computational116

domain, column Pi would have nonzero entries corresponding to the vertices of τj ,117

the values of which would be given by evaluating bilinear basis functions ϕ on T (xi
p),118

see Figure 2.1 for a visual diagram. We then form restriction as the transpose of119

prolongation, R = P T , as is standard for a symmetric problem. Note that even if120

Nc = Np, surjectivity onto the computational degrees of freedom is not guaranteed.121

Remark. The type of basis function on the physical discretization does not need122

to be the same as on the computational system. For example, the physical system123

can be discretized using P1 triangles and the computational domain using Q1 quads.124

Moreover, while it is possible to use mismatching polynomial degrees, for example, P2125

triangles on the physical domain and Q1 on the computational, we have not tested126

this and leave careful analysis of this to a future work.127
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Fig. 2.1. A diagram of the interpolation process. On the left, vertices of the physical mesh are
remapped to the computational domain via T , this transformed mesh is displayed in blue with dashed
lines. On the right is a zoomed view of computational element (4, 1): a physical degree of freedom is
interpolated to the enclosing computational element by evaluating its mapped position with bilinear
basis functions to give interpolation coefficients.

2.2. Multigrid Hierarchy. To construct a full multigrid hierarchy to solve128

(2.1), we will assume we have access to the following:129

1. A linear system for the physical PDE, Apup = fp, whether that be through130

an explicit matrix or some method to compute matrix-vector products.131

2. A stationary solver S to cheaply relax residuals defined on Ap.132

3. A computational linear system, Ac, as from section 2.133

4. An interpolation operator, P , as from subsection 2.1.134

Fig. 2.2. An example multigrid hierarchy. The finest level is the original physical system (left-
most mesh), followed by the hierarchy of structured grids (right three meshes).

We solve the computational system, Ac, using black box multigrid implemented in135

the Cedar software package [4, 5, 11], though any geometric multigrid solver can be136

used. This applies a standard coarsening by two in each dimension until a compu-137

tational hierarchy is formed. The full hierarchy is formed by prepending the original138

physical system to the computational hierarchy, see Figure 2.2. Discrete solutions are139

transferred between the physical and computational systems using P . We sketch out140

the solver algorithm in the following subsections.141

2.2.1. Setup phase. Inputs: Ap, relaxation S, physical mesh Tp, diffeomorphic142

mapping T , weak form of PDE.143

1. Discretize Ac by mapping weak form using T (2).144
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2. Compute interpolation P by mapping vertices of Tp via T (2.1).145

3. Setup solver on Ac using geometric multigrid.146

2.2.2. Solve phase. Inputs: Ap, relaxation S, Ac, right-hand-side fp, approx-147

imate solution up.148

1. Pre-relaxation: up ← ω(fp −Apup).149

2. Restrict residual: rc ← R(fp −Apup).150

3. Computational solve with geometric multigrid: uc = A−1
c rc.151

4. Prolongate solution: up ← Puc.152

5. Post-relaxation: up ← ω(fp −Apup).153

3. Learning the mapping. Thus far, we have developed a solver framework154

for problems in which an analytic mapping T between the physical and computa-155

tional domains is known and can be defined a priori. However, for more complicated156

geometry this is usually not the case. We will show how an approximate mapping157

Tθ : Ωp → Ωc, parameterized by some values θ, can be learned.158

In the machine learning sphere, Neural Ordinary Differential Equations [3] (Neural159

ODEs, or NODEs), are a continuous generalization of feedforward networks wherein160

the layer update is given by some continuous function f(x, t) : Rd ×R→ Rd; evalua-161

tion of the neural network is then computed by integrating f in time. In this context,162

we use Neural ODEs as they guarantee a function that is smooth and invertible –163

sufficient for use as a diffeomorphic mapping.164

Formally, we have165

(3.1) Tθ(x) = z(1) =

∫ 1

0

fθ(z(t), t) dt,166

where z(0) = x and fθ(x, t) is a learned vector field parameterized by θ. Derivatives167

of the network evaluation, for both backpropagation and finite element assembly, can168

be efficiently computed by integration of an adjoint equation [10, 3]. The inverse of169

the function can be computed simply by integrating backwards in time.170

To “train” Tθ to approximate the mapping between our physical and computa-171

tional domains, we will create a loss function inspired by large deformation diffeo-172

morphic metric mappings (LDDMM) [8]. The LDDMM suite of algorithms is used in173

applications such as medical imagery to map and transfer images between different174

coordinate bases; here, we will use it to map continuous functions between domains.175

Fig. 3.1. An example star-shaped domain (left) with corresponding unsigned distance function
(right). Even if the underlying geometry is non-convex it is possible to construct a distance function
to represent it.
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Let UΩ be an unsigned distance function defined like176

UΩ(x) =

{
∥x− P∂Ω(x)∥2 x ̸∈ Ω

0 otherwise
(3.2)177

where P∂Ω(x) = argminy∈∂Ω ∥y − x∥22 is the projector onto the boundary of Ω. We178

define the images of the physical and computational domains simply by179

Ip(x) = UΩp
(x),(3.3)180

Ic(x) = UΩc
(x).(3.4)181

These can be interpreted as encoding the interior volume and boundary of the un-182

derlying geometry, as shown in Figure 3.1. Note that both of these functions are183

defined over all Rd, not simply in their respective domains. Following the LDDMM184

framework, we can then define the loss by185

(3.5) ℓ(θ) = ∥Ip ◦ T−1 − Ic∥2L2 ,186

which attempts to match the image of the transformed physical domain to that of the187

computational domain. The integral in (3.5) is then approximated by a Monte Carlo188

scheme of the form189

(3.6) ℓ(θ) ≈ 1

Ns

Ns∑
i=1

(Ip(T
−1(xi))− Ic(xi))

2,190

where the points {xi} are drawn uniformly from U(−1.5, 1.5)2, a region extending191

slightly past the computational domain. We choose this loss over, e.g., a pointwise192

loss such as
∑

i ∥Tθ(xi) − xi∥, as points on one domain are automatically moved to193

their closest equivalent position in the other; there is no need to explicitly identify194

nearest neighbors nor is there any explicit need to treat domain boundaries.195

An interesting consequence of the fact that this learning is performed on domains196

and not meshes, is that the mapping needs only to be computed once if the underlying197

domain remains the same. For example, if adaptive mesh refinement or a moving198

mesh method is used, then Tθ remains a valid mapping as the domain itself does not199

change. This also allows for the training cost to be amortized for, e.g., time-stepped200

simulations.201

4. Numerical Results. To evaluate the proposed framework, we have imple-202

mented a solver routine in MFEM [1]; the physical operator is discretized using P1203

triangular finite elements while the structured computational domain is discretized204

with Q1 quadrilateral elements. For our diffeomorphic geometric solver, we use the205

existing Gauss-Seidel implementation for relaxation on the fine grid and Cedar [11]206

and BoxMG [4, 5] for the geometric multigrid solve on the computational domain.207

This is compared against HYPRE’s BoomerAMG [9, 7] implementation to perform208

a solve on the physical operator outright. The tests were run on an ARM-based M1209

pro CPU running at 3.2GHz. Both cases were run on a single thread/process, though210

our solver can easily be modified to run on parallel machines as it is using mainly211

off-the-shelf solver components besides the discretization code.212

We tested performance on domains where the diffeomorphic mapping is analyt-213

ically known: a unit square (46 686 DOF) and a quarter annulus (110 083 DOF, see214

Figure 4.1) – both were generated with Gmsh [6] to create unstructured meshes. The215
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Fig. 4.1. A low-poly version of the quarter annulus domain, extending from π/2 to π radians.
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Fig. 4.2. Time-to-solution for the diffeomorphic GMG method as a function of computational
grid size (in one dimension). This is compared to BoomerAMG in HYPRE, displayed as the hori-
zontal red line in each plot.

first domain uses an identity mapping to the computational domain and serves as a216

baseline sanity check. The second has a mapping defined by a composition of trigono-217

metric functions. A random right-hand-side b and initial solution x0 was generated218

for each problem and overall wall clock time was recorded for the residual norm to219

be sufficiently minimized to below 10−10. The diffeomorphic solver was tested for220

various sizes of (square) computational domains; this is shown in Figure 4.2. Intu-221

itively, reaching an optimal time-to-solution requires a compromise of computational222

mesh fidelity and total work performed: too small of a computational mesh will fail223

to sufficiently capture medium- and long-range phenomena, while too large of a mesh224

will incur extra work at no benefit. For the unit square, the overall time to solution225

was 0.40 seconds with BoomerAMG and 0.26 seconds with the geometric solver. For226

the quarter annulus, the time to solution was 1.04 seconds with BoomerAMG and227

0.70 seconds with the geometric solver. In both cases, a roughly 33% speedup was228

achieved by using the diffeomorphic geometric solver.229

For the timing results above, the aspect ratio of the computational mesh was230

keep square, meaning that each dimension had the same number of elements. For231

domains that have roughly the square aspect ratio, this seems like a natural choice;232

however, one might expect for the quarter annulus that perhaps a different choice of233
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Fig. 4.3. The effect of computational mesh aspect ratio on solver convergence on the annulus
domain, for a small problem of N = 265 DOF. Optimal convergence (lower is better) is achieved by
an equal aspect ratio, denoted by the grey circle at (45, 45).

aspect ratio would result in faster convergence. A sweep of possible grid sizes was234

performed, the results of which are displayed in Figure 4.3. Optimal convergence for235

the quarter annulus is in fact achieved when a square aspect ratio is used. Different236

domains, however, would likely need further analysis on the computational mesh size237

and aspect ratio needed for convergence.238

Results for learned diffeomorphic mappings are currently preliminary; the learn-239

ing framework from section 3, was tested to learn the diffeomorphic mappings for a240

restricted channel (a box with cuts on top and bottom) and a rounded star domain.241

To visually identify the performance of the mappings, vertices from one mesh were242

mapped onto the other; i.e., computational mesh was mapped onto the physical and243

vice versa. Vertices should line up in their respective domains and not, for example,244

depart from the boundary – indicating that the two domains are mapped well. An-245

other consideration is that points should not be irregularly distributed in any part246

of the domain, as this may present eventual difficulties in discretizing the underlying247

PDE and remapping discrete solutions in that part of the domain.248

The forward and inverse mappings of the restricted channel geometry can be249

seen in Figure 4.4. Vertices are mapped (more-or-less) uniformly from one domain to250

another and except for small areas near the edges of the cutout, the domain boundary251

is mapped well. For the rounded star, Figure 4.5, the learned mapping is much looser252

in terms of both satisfying mapped point uniformity and boundaries of the domains.253

For example, there is a large clustering of points in the middle of the star, while254

mapped points are much sparser towards the points. It is also visually apparent that255

the method has some difficulty in matching, e.g., corners with smoothed edges.256
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Fig. 4.4. Vertices of the unit square mesh mapped onto the restricted channel domain (left),
and vertices of the restricted channel mesh mapped onto the unit square (right).

Fig. 4.5. Vertices of the unit square mesh mapped onto the rounded star domain (left), and
vertices of the rounded star mesh mapped onto the unit square (right). A large distribution of points
can be seen clustered in the middle of the star on the left, perhaps indicating potential Jacobian
irregularity.

5. Conclusions. We have presented a framework of enabling the use of geo-257

metric multigrid solvers on more complex geometries via the use of diffeomorphic258

mappings to transfer computations to structured domains. This not only preserves259

the efficiency and overall scalability of geometric multigrid methods but also allows260

their use on problems that are more traditionally solved by algebraic methods. For261

domains with analytic mappings, our method achieved a 33% speedup over Boomer-262

AMG on the same problem, underscoring its practicality. Moreover, for geometries263

where analytic mappings are unavailable, we propose a methodology for learning said264

mapping using invertible neural networks in the form of neural ODEs. While results265

for such mappings are still in development, preliminary findings suggest promise to266

generalize this framework to irregular, complex domains.267

Possible future directions can further focus and validate the use of learning map-268

pings in this solver framework, perhaps providing rigorous convergence guarantees269

under which a learned mapping sufficient under some metric can guarantee a geomet-270

ric solver that will be convergent. Another interesting direction would be to consider271
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applying this framework in a domain decomposition setting: geometric multigrid is272

already used in practice for semi-structured meshes, and allowing more flexibility in273

the types of (sub)-domains would allow such solvers to be much more competitive274

with existing algebraic methods in terms of the geometry that it can be applied to.275
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