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Optimization Problems in Numerics

• Sparse Approximate Inverses

• Optimal Boundary Conditions for Schwarz Preconditioners1

• Coefficients for Jacobi Method
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1Taghibakhshi et al., “Learning Interface Conditions in Domain Decomposition Solvers”. NeurIPS 2022. (Figure

is from paper)
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Notation, Stating the optimization problem

• Define loss/objective function,

argmin
θ

f(θ). (1)

• How to compute minimum?

• Take gradient, ∇θf , run gradient descent steps

θ ← θ − α∇θf. (2)

• Simple in theory...
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Taking the gradient

• How do we take derivatives of complex function?

• Assume they are compositions of simpler functions and apply

chain-rule

f(x,y) = 2 sin
(
xTy

)
df

dx
= 2

d sin(z)

dz

d
(
xTy

)
x

= 2 cos
(
xTy

)
y
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But I don’t want to take a derivative by hand

• Automatic differentiation has been around since early 50’s 2

• Perform original calculation as normal, record intermediate

operations (forward pass)
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2

2John F. Nolan. “Analytical differentiation on a digital computer”. Massachusetts Institute of Technology, 1953.
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Automatic Differentiation

• Flow gradient backwards by multiplying by transpose Jacobian

through each node

• This is called reverse-mode, or adjoint mode differentiation

• Implemented in big frameworks: PyTorch, Tensorflow, etc.
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Detour: Sparse Matrix Operations

• Breadth of literature on the forward mode for sparse matrix
ops345

• Matrix matrix products, direct solves, etc.

• What about differentiation through sparse matrix expressions?

• What should that entail?

3Bank et al., “Sparse matrix multiplication package (SMMP)”. Advances in Computational Mathematics, 1993

4Demmel et al., “A Supernodal Approach to Sparse Pivoting”. SIAM Journal on Matrix Analysis and

Applications, 1999

5Dalton et al., “Optimizing Sparse Matrix–Matrix Multiplication for the GPU”. ACM Transactions on

Mathematical Software, 2015
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Differentiation through Sparse Matrices?

• Large frameworks don’t fully support sparse inputs

• Autogradient on dense matrices gives dense gradient

• Not scalable, want to keep things sparse

• Ideally, differentiate wrt nozeros of sparse input
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Differentiable Sparse Kernels

• No general support exists (special cases for Graph-Nets, etc.),

so we rolled our own

• Framework for PyTorch for general CSR support with

differentiation

• Supports expressions that consist of primitives like:

• SpMV, SpSpMM, SpDMM

• Triangular solve, direct solve

• Analogous to SciPy’s sparse or CuPy with support for autodiff

• CUDA support for parallelization

• https://github.com/nicknytko/numml
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Timings, Scalings

Have scalable forward and backward pass on both CPU and GPU
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Mini-example of Sparse Optimization

Consider Jacobi relaxation, we’ll use a per-entry weight Ω,

x← x+ΩD−1
(
b−Ax

)
. (3)

How do we get Ω? Optimize over error propagator,

argmin
Ω
∥I−ΩD−1A∥2F . (4)

Run through optimizer to get entries of Ω
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Ω

D−1 A

I

×
ΩD−1

×
ΩD−1A

−
I−ΩD−1A

∥ · ∥F

∥I−ΩD−1A∥F

(·)2

∥I−ΩD−1A∥2F
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For 1-D Poisson with Dirichlet conditions, obtain ωi ≈ 2
3 on

interior, higher on boundary
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(Easy!) Sparse approximate inverses

Given M with certain sparsity pattern, want entries so that

M ≈ A−1

argmin
M
∥I−MA∥2F

Easy to implement in code:
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Boundary Conditions for Schwarz Preconditioners

Based on work by Taghibakhshi et al.

Want to find an additive overlapping Schwarz preconditioner,

A−1 ≈M(θ) =

S∑
i=1

R̃T
i

(
RiART

i + L
(θ)
i

)−1

Ri, (5)

where L
(θ)
i is the output of a graph neural network
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A−1 ≈M(θ) =

S∑
i=1

R̃T
i

(
RiART

i + L
(θ)
i

)−1

Ri, (5)

Optimize stochastic approximation to error propagator,

ℓ = max
x∈X

∥∥∥(I−M(θ)A
)
x
∥∥∥
2
, (6)

for random unit vectors X
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N = 1,521 N = 2,916 N = 5,929 N = 8,100

Sparse
CPU 3.060 5.088 12.906 18.321

GPU 1.516 1.817 3.106 3.979

Dense
CPU 2.274 15.126 – –

GPU 0.971 2.262 – –

(– ran out of memory)
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Sparse Relaxation for Multigrid

For an algebraic multigrid solver with levels

A(l) ≤ A(l−1) ≤ · · · ≤ A(1),

can we find an optimal relaxation scheme at each level?

Find sparse M(i) for each level with same sparsity as A(i),

x←M(i)
(
b−A(i)x

)
, (7)

that complements coarse-grid correction

arg min
M(...)

∥GMG∥ (8)

For full multigrid error propagator GMG
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Claim: one iteration of Ax = 0 with AMG using guess z is GMGz

arg min
M(...)

∥GMGz∥, (9)

for nonzero unit guess z
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Conclusions

• We have a general framework for sparse optimization with

automatic differentiation

• Huge number of optimization problems to explore

• Sparse relaxation

• Learning Schwarz Preconditioners

• Optimizing Heavyball to get CG?

• Lets chat about ideas afterwards

• https://github.com/nicknytko/numml

Future:

• Scale up to multi-GPU and multi-node computation

• Investigate (neural) symbolic regression for interpretable

learned methods
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Recirculating Flow Setup

∂u

∂t
− ε∇2u = ∇ · (wu) = 0, (10)

w(x, y) =
[
2y(1− x2) −2x(1− y2)

]T
. (11)

On unit square domain, Dirichlet condition: 1 on right boundary, 0

elsewhere. ε = 0.005.
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