
A SUPERVISED LEARNING APPROACH TO PREDICTING1
MULTIGRID CONVERGENCE2

NICOLAS NYTKO∗3

In collaboration with: Matthew West, Luke Olson, Scott MacLachlan4

Abstract. Classical AMG solvers often require careful parameter tuning to achieve optimal5
convergence, and the way these parameters affect performance can be unpredictable in practice.6
Evidence is presented that supervised learning techniques are able to learn certain characteristics7
of two-level multigrid solvers, particularly the rate of convergence and optimal relaxation weight8
for a given coarse/fine mesh splitting. Random perturbations of C/F splittings are generated and9
evaluated in a multigrid solver to train a convolutional neural network (CNN) in order to predict10
convergence and a relaxation weight for the 1D variable coefficient Poisson equation, and to predict11
the convergence rate for a specific 2D convection-diffusion problem. Additionally for the 2D problem,12
the use of graph nets is explored for use on general finite-element meshes.13

Key words. convergence, relaxation weight, machine learning, supervised learning, graph net,14
cnn, convolutional network15

1. Introduction. Multigrid methods are some of the most widely used linear16
solvers for sparse systems, particularly ones that arise from the discretization of partial17
differential equations. By “downsampling” the original problem to a series of smaller18
and smaller problems, fast convergence can be obtained with minimal work [2]. Op-19
timal “downsampling” is critical to the success of the method; classical Algebraic20
Multigrid (AMG) techniques attempt to create an interpolation operator by exploit-21
ing the structure of the original system [13]. However, these methods often require22
careful parameter tweaking to obtain a sensible operator and C/F splittings and often23
the best way to test the parameter space is to actually run the multigrid iterations.24

In this paper, the following research question is addressed: can convergence rates25
of multigrid solvers be learned, and are neural networks an effective way of learning26
this attribute on the solver? The ability to predict this would aid in the use and27
study of classical AMG methods by allowing users to estimate efficacy ahead of time:28
for example being used to differentiate between different or the most optimal AMG29
methods for a specific problem. We address this question by introducing a method30
of generating data and training neural networks to predict convergence rates for a31
specific PDE or class of equations. Two problems are discussed here: (1) a 1D vari-32
able coefficient Poisson equation, and (2) a 2D recirculating flow convection-diffusion33
problem with specific parameters. Sections 2.1 and 2.3 describe how these random34
grid splittings are generated for the two problems and evaluated in a multigrid solver.35

For the 1D poisson case, convolutional neural networks (CNNs) are trained to36
predict the convergence rate and optimal relaxation weight (Section 2.2). For the 2D37
convection-diffusion problem, a CNN was first trained to predict convergence (Section38
2.4), and then two different graph nets were trained to extrapolate to differently sized39
inputs and non-grid meshes (Sections 2.5, 2.6). Numerical results consisting of the40
network error performance and sample predictions are shown in Section 3. Finally,41
further discussion and possible directions of future work are given in Section 4.42

∗University of Illinois at Urbana-Champaign, (nnytko2@illinois.edu).

1

This manuscript is for review purposes only.

mailto:nnytko2@illinois.edu

2 NICOLAS NYTKO

2. Methods. The methods described here will be split into two subsections43
describing each problem that was explored. First, the Poisson case and the data44
generation is discussed (Section 2.1) followed by the respective convolutional neural45
network that was trained (Section 2.2). Afterwards, an overview of the data generation46
for the 2D convection-diffusion problem is given (Section 2.3) and then followed by47
a description of the convolutional network that was trained (Section 2.4). The use48
of two graph nets is also described: one that performs a simple edge convolution for49
each node (Section 2.5), and another that implements “message passing” and learns50
optimal edge weighting of the convolution (Section 2.6).51

2.1. 1D Poisson. Formally, the problem being solved is the Poisson equation52
in one dimension with variable coefficients53

(2.1) −∇ · (k (x)∇u) = f,54

with the right-hand side f (x) being arbitrarily chosen. Eqn. (2.1) is discretized using55
finite differences on a grid of N = 31 internal points on the domain Ω = [−1, 1] and56
Dirichlet boundary conditions, ∂Ω = 0. To preserve the symmetric, positive definite57
properties of the resulting linear system, the k (x) function is discretized on the grid58
midpoints [1].59

Before the neural network can be trained, a dataset of approximately 300,00060
random C/F grid splittings and their computed convergence rate and optimal relax-61
ation weight was generated. A set of 6 reference grids were first created according to62
various “coarsening” factors:63

(2.2) r =
{

2 3 4 5 6 7 8 9
}
.64

Each of the values in 2.2, say ri = j refers to a grid in which each jth point is coarse,65
and the rest fine. So, a coarsening by 3 is a grid that has roughly 1

3 of its distribution66
of points as coarse and all others fine. Each of these reference grids was randomly67
permuted such that each grid point had a random probability of being flipped to the68
opposite value: coarse point to fine and fine point to coarse. For each reference grid,69
approximately 1000 random trials of each following probability were run:70

(2.3) p =
{

0.01 0.05 0.1 0.25 0.5 0.75
}

71

Additionally, each trial was run with a randomly-chosen function for the variable72
coefficients k (x). The function is randomly chosen from one of four functional forms73

(2.4) k (x) =

α 0 < α < 10

rand() (α+ 1) 0 < α < 10

α cos (πxβ) + γ 0 < α < 10, 0 < β < 10, α < γ < 10∣∣∣∑5
i=1 αix

i
∣∣∣+ 0.01 −10 < α < 10,

74

with coefficient values specifically picked to prevent the function from being non-75
positive at any value in Ω.76

The full set of C/F splittings was then given to a 2 level V-cycle Multigrid solver77
that was run for a maximum of 15 iterations. The solver is composed of one round of78
weighted Jacobi pre-smoothing, a coarse error correction, then another round of Jacobi79
post-smoothing. At each iteration, the absolute error between the approximation80
and the “exact” solution (pre-computed via sparse linear solve) was found and saved:81

This manuscript is for review purposes only.

A SUPERVISED LEARNING APPROACH TO PREDICTING MULTIGRID CONVERGENCE3

ei =
∥∥A−1f − ui

∥∥. This sequence of errors was then used to compute the average82
convergence rate. To acquire the optimal relaxation weight, the smoother was run83
through a bracketed numerical optimization method with the assumption that the84
convergence rate is unimodal as a function of relaxation weight. 185

2.2. Poisson CNN. Two separate deep convolutional networks with residual86
connections were trained to separately predict the optimal relaxation weight and con-87
vergence rate when given a linear C/F splitting. The architecture for both networks88
is identical and a textual overview is given here:89

1. 6 1D CNN layers of kernel size 7, input 2 channels output 7 channels. Padding90
by three on each side to keep dimensions static.91

2. 6 CNN layers of kernel size 5, input/output 7 channels. Padding by two on92
each side.93

3. 6 CNN layers of kernel size 3, input/output 7 channels. Padding by 1 on each94
side.95

4. Max-pooling layer of kernel 2, stride 2. Effectively reduces input size by half.96
5. 8 Fully-connected layers to gradually reduce output to a scalar describing the97

convergence or relaxation weight.98
Each layer is followed by an implicit ReLU nonlinear activation function. Because99
the convolutional layers (except for the first) keep the input and output size static,100
we are able to push residual values and skip layers similarly to a ResNet [8, 6]. Even101
numbered layers n take as input both the output of layers n − 1 and n − 2, while102
odd-numbered layers only use the output from layer n− 1.103

The C/F splitting is remapped such that a coarse point is given a value of 1104
and a fine point the value of −1. The variable coefficients were also re-discretized105
to be defined on the nodal points instead of midpoints in order for the splitting106
and coefficients to be represented by vectors of same length. These two were then107
stacked into a two-channel tensor for input into the CNN. When training, input values108
(convergence rate and relaxation weight) are normalized to be within the range of109
[0, 1]. This normalization is undone when the output is displayed.110

2.3. 2D Convection-Diffusion. This specific problem models what is called111
the double glazing problem, modeling the temperature distribution of a cavity with a112
single “hot” wall. This is given by the differential equation:113

(2.5) − k∇2u+ w · ∇u = f.114

The wind velocity function, w (x, y) is defined as w (x, y) =115 [
2y
(
1− x2

)
2x
(
1− y2

)]
. The domain is a square of side length two centered at the116

origin, Ω = [−1, 1] × [−1, 1]. Dirichlet boundary conditions are defined on ∂Ω, with117
the one “hot” wall defined on x = 1 with value ∂ΩH = 1. The other boundaries are118
“cold” walls with ∂Ωc = 0. A diffusivity constant of k = 0.1 is used. This problem is119
derived from an example by Elman, Silvester, and Wathen [4].120

This PDE is discretized using finite-elements on a structured grid of 25x25 internal121
points using the Firedrake software for FEM discretizations [3, 12, 7, 10]. Using a122
grid as a basis for the discretization allows use of both CNN and more sophisticated123
graph convolutional techniques.124

Generating a dataset of mesh splittings and convergence rates was done in an125
overall similar way to the 1D Poisson equation with a few notable differences. Again,126

1Experimental testing generally asserts this to be true, however this will remain a conjecture for
now.

This manuscript is for review purposes only.

4 NICOLAS NYTKO

a set of reference C/F splittings were generated that are later permuted. For the127
convection-diffusion case, the following reference splittings were used:128

1. All fine points129
2. All coarse points130
3. Splitting as given by Ruge-Stüben AMG (θ = 0.25) [13, 11]131
4. Coarsening in each direction by 2132
5. Coarsening in each direction by 3133
6. Coarsening in each direction by 4134
7. Coarsening in each direction by 5135

The entries of each individual reference splitting were then randomly permuted136
according to a defined probability. The probability values used are the same as those137
in the Poisson case, repeated here for convenience:138

(2.6) p =
{

0.01 0.05 0.1 0.25 0.5 0.75
}
.139

Generated splittings that are unsolveable (i.e., consist of no coarse points) were re-140
jected and their trial re-run. This generated set of C/F splittings was passed along141
to another 2 level V-cycle multigrid solver run for a maximum of 50 iterations. The142
interpolation operator was formed by means of direct interpolation, the implementa-143
tion of which gratiously taken from the PyAMG [11] library. This solver performs two144
rounds of Jacobi pre-and-post relaxation, with a coarse error correction between the145
relaxation steps. The absolute error between the approximation at each iteration and146
the “exact” solution was computed and saved, with the full sequence used to find the147
average convergence rate. Note the optimal Jacobi relaxation weight was not found148
here, as experimentation found that the optimal weight would nearly always be 1.149

The convection-diffusion problem was additionally re-discretized at 4 different150
mesh sizes: 15 × 15, 25 × 25, 35 × 35, 50 × 50. The above process was re-run for151
each mesh size to generate a new dataset for use in the graph nets. To distinguish152
between the two datasets, they will hereby be referred to as the statically-sized (only153
containing 25× 25 mesh and splittings) and the variably-sized datasets.154

2.4. Convection-Diffusion CNN. A 2D convolutional network was trained155
on the statically-sized dataset to predict convergence when given a C/F splitting for156
the specific recirculating flow problem. Since the input parameters are slightly less157
complex, a less deep (shallower, if you will) network was trained:158

1. 3 2D CNN layers of kernel 7, input two channels output 7 channels. Padding159
by three on each side to keep dimensions.160

2. 3 CNN layers of kernel 5, input/output 7 channels. Padding by two on each161
side.162

3. 3 CNN layers of kernel 3, input/output 7 channels. Padding by 1 on each163
side.164

4. 2D Max-pooling layer of kernel 2, stride 2. Effectively reduces input size by165
half.166

5. 1 Fully-connected layer to reduce output to a scalar predicting convergence167
rate.168

Each layer is followed by a ReLU nonlinear activation function. Odd layers are fed169
the output of the previous two layers, while even layers are fed the input of only170
the previous layer, similarly to a ResNet [8, 6]. C/F splittings are mapped so that171
coarse points have value 1 and fine points have value −1. The CNN thus has a172
25× 25 = 625-length vector as input. Interestingly, normalization of the convergence173
rates is unneeded as the minimum and maximum recorded values are already close to174

This manuscript is for review purposes only.

A SUPERVISED LEARNING APPROACH TO PREDICTING MULTIGRID CONVERGENCE5

0 and 1, respectively.175

2.5. Convection-Diffusion Graph Convolutional Network (GCN). The176
main downside of using traditional convolutional layers is that they are useful only on177
structured, grid-like inputs. Grid-based convolution is ineffective on the more complex178
meshes that may arise from finite-element discretizations. By treating the input mesh179
as a graph and using graph-based convolution techniques, we may get around this180
roadblock. The first graphnet that was tried uses the GCN layer introduced by Kipf181
and Welling [9] and is described here, the other uses an Edge-Conditioned Convolution182
(ECC)/message passing layer and is described in Section 2.6.183

For the graphnets, the sparse FEM system was re-interpreted as a graph by184
assigning each row/column to be a node and defining connectivity between nodes as185
nonzero matrix entries. Edge weights were taken to be the entry values themselves,186
although normalized to be within the range of [0, 1]. This network was trained on the187
variably-sized dataset; as will be seen, the lack of any fully-connected layers allows188
for any arbitrary input.189

The Graph Convolutional Network (GCN) layer is defined as an operator on the190
graph Laplacian, using the following propagation rule:191

(2.7) H(i) = σ

(
D̃
− 1

2 ÃD̃
− 1

2H(i−1)W (i) + b(i)
)
.192

With H(i) being the i’th hidden layer, Ã = A + I the adjacency matrix with added193
self loops, d̃ii =

∑
j ãij a diagonal matrix consisting of the sum of outgoing edge194

weights, W (i) the weight matrix at layer i, b(i) a learned bias vector with same shape195
as H(i), and σ (·) some nonlinear activation function. Hidden layers have dimensions196
n× f , with n the number of graph nodes and f the number of features at each node.197
Thus, using only GCN layers it is not possible to reduce the number of rows in hidden198
layers (or the input layer for that matter).199

Assume σ (·) = ReLU (·) = max {·, 0} for all activation functions. Let X be the200
n × 1 vector containing C/F splitting values for each node. The network that was201
trained for this application consisted of the following architecture:202

H(1) = σ
(
D−

1
2AD−

1
2XW (1) + b(1)

)
∈ Rn×2

H(2) = σ
(
D−

1
2AD−

1
2H(1)W (2) + b(2)

)
∈ Rn×3

H(3) = σ
(
D−

1
2AD−

1
2H(2)W (3) + b(3)

)
∈ Rn×2

H(4) = σ
(
D−

1
2AD−

1
2H(3)W (4) + b(4)

)
∈ Rn×1

R =

. . . XT . . .

. . .
(
H(1)

)T
. . .

. . .
(
H(2)

)T
. . .

. . .
(
H(3)

)T
. . .

. . .
(
H(4)

)T
. . .

∈ R9×n

y =

n∑
j=1

σ
(
σ
(
rjW

(5) + b(5)
)
W (6) + b(6)

)
∈ R203

204

This manuscript is for review purposes only.

6 NICOLAS NYTKO

Model Metric Dataset Value
Jacobi Weight MSE Training 1.8331× 10−3

Jacobi Weight MSE Testing 1.8396× 10−3

Jacobi Weight L1 Training 2.9254× 10−2

Jacobi Weight L1 Testing 2.9271× 10−2

Convergence Factor MSE Training 1.4839× 10−3

Convergence Factor MSE Testing 1.5171× 10−3

Convergence Factor L1 Training 2.3908× 10−2

Convergence Factor L1 Testing 2.3865× 10−2

Table 3.1: Final training and testing Mean Squared Error (MSE)/L1-norm loss values
for the two Poisson models. Lower values correspond to higher model accuracy.

Note that the matrix R is formed whose columns are the propagation history205
of each node; this is an attempt to emulate traditional ResNet architectures. The206
final scalar output is computed by summing each column of R through a two layer207
fully-connected neural network, with the first layer taking as input 9 features and208
outputting 5 features, and the second layer taking as input 5 features and outputting209
1 feature. This local transformation of each nodal value following by a global averaging210
removes any dependency for a fixed input size – instead any sized graph and splitting211
could (in theory) be used.212

2.6. Convection-Diffusion Message Passing Network (MPNN). A down-213
side of the GCN layer, while being simple to implement and understand, is that it214
does not effectively learn edge features between nodes and thus is only an approxima-215
tion of a convolution on a graph. The Edge-Conditioned Convolution (ECC) layer,216
as defined by Simonovsky and Komodakis [14], attempts to combat this by learning217
optimal edge weights given an arbitrary node-edge neighborhood. This approach is218
also referred to as a “message-passing network”, as each connected neighbor attempts219
to learn a “message” that is passed to the original node [5]. The convolution operation220
is defined as221

(2.8)
(
H(i)

)
j

=
1

|N (j)|
∑

k∈N (j)

F (i) (ej,k)
(
H(i−1)

)
k

+ b(i)222

whereH(i) ∈ Rn×fi is the i’th hidden layer, N (i) is a map returning the neighborhood223
of vertex i (including itself), F (i) : E 7→ Rfi×fi−1 is some function (in our case a224
small fully-connected neural network) that outputs a learned weight matrix given an225

edge, and b(i) is a bias term for layer i. The notation
(
H(i)

)
j
here denotes the j’th226

row of the i’th hidden layer.227
Using the ECC layer, another graph net was trained to predict the convergence228

rate given some C/F mesh splitting. The architecture is identical to that in Section229

2.5 with the exception that the propagation layers H(i) : i = 1 . . . 4 are replaced230
with (2.8) and surrounded with a ReLU activation layer. Each F (i) is a two-layer231
fully-connected network taking some edge e ∈ Rfi and outputting a weight matrix232
Θ ∈ Rfi×fi−1 .233

3. Numerical Results.234

This manuscript is for review purposes only.

A SUPERVISED LEARNING APPROACH TO PREDICTING MULTIGRID CONVERGENCE7

3.1. 1D Poisson. A total of 336,000 C/F “grid” splittings were randomly gen-235
erated for the variable-coefficient Poisson model. Of these, a random 85% of data236
items were designated as a training set and the remaining 15% reserved for a testing237
set. The relaxation and convergence CNNs were trained for a total of 30 epochs each,238
where each epoch is a total pass over all training set entries. Models were trained239
using an MSE loss, and final loss values for both networks are detailed in Table 3.1.240

Overall, the resulting data is encouraging and seems to indicate that both conver-241
gence factors and relaxation weights for the Poisson problem are predictable using a242
convolution-based network. Sample convergence rate predictions on the training and243
testing subsets are shown in Figure 3.1; these plots display predicted rates as a func-244
tion of the true rates, so error is indicated by deviation from the diagonal of the plots.245
It is interesting to visually see that the network has an easier time predicting more246
convergent grids (c < 0.6 or so) than more degenerate grids. A lack of predictions less247
than ≈ 0.1 is a deficiency of the input data not having grids with those convergence248
values.249

Predictions for relaxation weights on both training and testing subsets are shown250
in Figure 3.2. Like the previous convergence plots, more accurate predictions are251
closer to the plot diagonals. There is a positive correlation between the predictions252
and the true values, though unlike the convergence rates there is no obvious “split” in253
the prediction data. The lack of predictions below 0.1 is likely to also be caused by254
the input data.255

(a) Testing predictions (b) Training predictions

Fig. 3.1: Predicted convergence values vs. true convergence values on (3.1a) test-
ing and (3.1b) training datasets for Poisson equation. Values closer to the diagonal
represent more accurate predictions.

3.2. 2D Convection-Diffusion. Two datasets were created for the 2D recircu-256
lating flow problem: a set of statically-sized C/F splittings and a set of variably-sized257
splittings; both datasets consisted of 84 000 elements. The variably-sized dataset was258
evenly divided into the four mesh sizes: 15 × 15, 25 × 25, 35 × 35, 50 × 50. Each259
dataset was then split 85%-15% into training and testing subsets. All neural net-260
works were trained for 10 epochs each on an MSE loss, loss history for both datasets261
is displayed in Figure 3.3. The recirculating flow CNN was trained and tested on262
the static dataset, while the two graph nets were trained on the variable dataset and263

This manuscript is for review purposes only.

8 NICOLAS NYTKO

(a) Testing predictions (b) Training predictions

Fig. 3.2: Predicted relaxation weights vs. true relaxation weights on (3.2a) testing and
(3.2b) training datasets for Poisson equation. Values closer to the diagonal represent
more accurate predictions.

evaluted on both datasets.264
Again, results show that networks are able to learn convergence values for the265

particular multigrid solver and recirculating-flow problem. Graph nets and convolu-266
tional networks seem to have more-or-less the same predictive power, with the graph267
nets having the obvious upside of being cable of handling non-rectangular grid inputs.268
Almost expectedly, the message-passing network (ECC) was able to more effectively269
learn the problem space than the GCN network, likely due to it learning edge weight-270
ings as well.271

(a) Static dataset (b) Variable dataset

Fig. 3.3: MSE loss history on (3.3a) static and (3.3b) variable datasets. Network
types are differentiated between each other and lower values correspond with lower
prediction error against the entire dataset.

This manuscript is for review purposes only.

A SUPERVISED LEARNING APPROACH TO PREDICTING MULTIGRID CONVERGENCE9

Predicted convergence values by the CNN over the static dataset are displayed272
in Figure 3.4. The subplots detail predicted convergence rates vs their true value for273
each C/F splitting. Almost opposite to the phenomenon observed in the Poisson CNN274
(Figure 3.1, the network predicts more poorly converging grids accurately. This could275
perhaps be explained by the data more densely populated with the poor convergence276
grids, and has a distinct lack of optimal grids.277

(a) Testing predictions (b) Training predictions

Fig. 3.4: Predicted convergence rates vs. true convergence rates on (3.4a) testing and
(3.4b) training datasets for model convection-diffusion problem, using a convolutional
network. Values closer to the diagonal represent more accurate predictions.

Convergence predictions by the ECC network over the variable-size dataset are278
given in Figure 3.5. Various horizontal trends of predictions are visible in the plots,279
with distinct subsets of convergence factors all being predicted as the same value.280

4. Discussion and Conclusions. In this paper, a method for training convo-281
lutional and graph nets was presented to predict convergence of a two-level multigrid282
solver when given an input C/F mesh splitting. Results indicate that neural networks283
can indeed predict convergence for a multigrid solver. Convolutional networks are284
effective at learning attributes on structured grid-like 1D or 2D meshes, and graph285
nets are able to generalize on variably-sized structured meshes. The graph networks286
could be further developed and trained on more general classes of problems, instead of287
the specific convection-diffusion problem or the variable-coefficent Poisson equation.288

Future works could build on the networks trained here and explore their appli-289
cations, using them for example to pick between different AMG aggregation methods290
to find the most optimal for a specific use case. Another more ambitious future work291
could be to use the neural networks in an optimization method to obtain the most292
convergent or most work efficient C/F splitting for a problem.293

REFERENCES294

[1] J. Adler, H. D. Sterck, S. MacLachlan, and L. Olson, Numerical partial differential295
equations. Draft, 2020.296

[2] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM, 2000.297
[3] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using298

Python, Advances in Water Resources, 34 (2011), pp. 1124–1139, https://doi.org/http:299

This manuscript is for review purposes only.

https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013

10 NICOLAS NYTKO

(a) Testing predictions (b) Training predictions

Fig. 3.5: Predicted convergence rates vs. true convergence rates on (3.5a) testing
and (3.5b) training datasets for model convection-diffusion problem, using an Edge-
Conditioned Convolution network. Values closer to the diagonal represent more ac-
curate predictions.

//dx.doi.org/10.1016/j.advwatres.2011.04.013. New Computational Methods and Software300
Tools.301

[4] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers With302
Applications in Incompressible Fluid Dynamics, Oxford University Press, 2014.303

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural message304
passing for quantum chemistry, 2017, https://arxiv.org/abs/1704.01212.305

[6] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015,306
https://arxiv.org/abs/1512.03385.307

[7] M. Homolya and D. A. Ham, A parallel edge orientation algorithm for quadrilateral meshes,308
SIAM Journal on Scientific Computing, 38 (2016), pp. S48–S61, https://doi.org/10.1137/309
15M1021325, http://arxiv.org/abs/1505.03357, https://arxiv.org/abs/1505.03357.310

[8] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely connected311
convolutional networks, 2018, https://arxiv.org/abs/1608.06993.312

[9] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional net-313
works, 2017, https://arxiv.org/abs/1609.02907.314

[10] A. T. T. McRae, G.-T. Bercea, L. Mitchell, D. A. Ham, and C. J. Cotter, Automated315
generation and symbolic manipulation of tensor product finite elements, SIAM Journal316
on Scientific Computing, 38 (2016), pp. S25–S47, https://doi.org/10.1137/15M1021167,317
http://arxiv.org/abs/1411.2940, https://arxiv.org/abs/1411.2940.318

[11] L. N. Olson and J. B. Schroder, Pyamg: Algebraic multigrid solvers in python v4.0, 2018,319
https://github.com/pyamg/pyamg. Release 4.0.320

[12] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae,321
G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: automating the322
finite element method by composing abstractions, ACM Trans. Math. Softw., 43 (2016),323
pp. 24:1–24:27, https://doi.org/10.1145/2998441, http://arxiv.org/abs/1501.01809, https:324
//arxiv.org/abs/1501.01809.325

[13] J. Ruge and K. Steuben, Multigrid Methods, SIAM, 1987, ch. 4. Algebraic Multigrid.326
[14] M. Simonovsky and N. Komodakis, Dynamic edge-conditioned filters in convolutional neural327

networks on graphs, 2017, https://arxiv.org/abs/1704.02901.328

This manuscript is for review purposes only.

https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1512.03385
https://doi.org/10.1137/15M1021325
https://doi.org/10.1137/15M1021325
https://doi.org/10.1137/15M1021325
http://arxiv.org/abs/1505.03357
https://arxiv.org/abs/1505.03357
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1609.02907
https://doi.org/10.1137/15M1021167
http://arxiv.org/abs/1411.2940
https://arxiv.org/abs/1411.2940
https://github.com/pyamg/pyamg
https://doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1704.02901

	Introduction
	Methods
	1D Poisson
	Poisson CNN
	2D Convection-Diffusion
	Convection-Diffusion CNN
	Convection-Diffusion Graph Convolutional Network (GCN)
	Convection-Diffusion Message Passing Network (MPNN)

	Numerical Results
	1D Poisson
	2D Convection-Diffusion

	Discussion and Conclusions
	References

