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Innovating and modernizing a Linear Algebra class through teaching
Computational SKkills

Introduction

In the curriculum of most leading universities both within the US and abroad, linear algebra is
considered one of the pillars of mathematical instruction in the engineering and science
disciplines. It is therefore taught very early on, in parallel with elementary calculus, and students
are familiar with concepts such as vectors, matrices, and linear spaces from the very beginning. In
this paper, we describe the design choices and implementation guidelines adopted during three
years of major innovation and overhaul of an existing linear algebra course (called the Traditional
course in the following) offered to engineering students at the University of Illinois at
Urbana-Champaign.

The Traditional linear algebra course was listed as an upper-level course, following the calculus
sequence targeted to freshmen and sophomores. This resulted in a significant portion of
engineering students only taking linear algebra later in the curriculum, despite the fact that most
of its content requires only Calculus 1 as a prerequisite. Consequently, instructors teaching
upper-level engineering courses which require a linear algebra background had to provide
students with review material, taking time away from the actual course content. Even mid-level
classes were hampered by not being able to use elegant linear algebra results, having to resort to
more cumbersome methods. Moreover, even though the traditional course was advertised as an
applied linear algebra course, it lacked the use of either modern teaching approaches or modern
tools to familiarize students with solutions to real-world applications.

Examples from other educational institutions have shown promise for modernizing the
engineering linear algebra curriculum, often with a focus on strengthening the use of
computational tools. A Python-based linear algebra course was developed at China University of
Geosciences, in which Jupyter notebooks were designed to introduce students to physical
representations of linear algebra concepts [1]. A qualitative survey reported an overwhelmingly
positive opinion of the course by students. At the University of Pittsburgh, chemistry research
was becoming increasingly reliant on computational tools, but the chemistry curriculum failed to
provide a sufficiently substantial computational background. Thus, scientific computing was
integrated with a mathematics course designed for chemistry students via Jupyter notebooks [2].
The modernized class focused on computing tools specifically relevant to chemistry, in place of
the plethora of topics covered in traditional computer science courses; this resulted in an overall
improvement in student opinion toward programming and Jupyter notebooks. These studies
suggest that introducing computational tools can serve as a focal point for an effective



modernization of a linear algebra course, while also providing a foundation for students’ future
computational endeavors.

The present project proposed a new linear algebra course, called the Computational course in the
following, targeted to freshmen and sophomores and including the use of modern computational
tools such as Python. The specific objectives were the following: (1) establish a stronger
integration of basic programming knowledge into the general engineering curriculum; (2)
introduce computational exercises that solve “real-world” linear algebra problems, emphasizing
the importance in connecting fundamental and applied concepts in modern mathematics
instruction; and (3) incorporate collaborative learning activities that motivate students to learn
mathematics and promote an environment for them to develop social and communication skills.
The linear algebra course was redesigned through a Community of Practice consisting of faculty
from Engineering and Mathematics Departments, collaborating closely to design the new
curriculum and implement the changes in stages, and with a view to sustainability of the

project.

This effort was begun in the fall of 2019, and has led to a successful, stable implementation as an
approved new course by the fall of 2021. Figure 1 shows that student enrollment numbers have
not only been moved from the traditional to the computational class, but that the new course is
attracting additional students from departments that had not implemented a comparable linear
algebra class in their curricula before.
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Figure 1: Student enrollment for the Computational and Traditional linear algebra courses, as well
as the added total enrollment, demonstrating the growth of the modernized computational class.

Section details the course changes and the means by which they were achieved, while
Section describes their implementation and reception so far. Section provides conclusions and a
perspective on the broader impact of this project, and others like it, in the future.

Methods

Changes via a Community of Practice

This project was funded by the Grainger College of Engineering Strategic Instructional
Innovations Program (SIIP) that promotes the sustainable adoption of evidence-based pedagogies



by forming Communities of Practice (CoPs) consisting of instructors who are committed to the
reform effort [3, 4, 5, 6]. While these CoPs can be comprised of any number of enthusiastic
lecturers and junior faculty, these CoPs are required to also include senior faculty who can broker
the departmental buy-in to sustain innovations and reforms. Further, these CoPs are encouraged to
meet weekly. During these weekly meetings, representatives from the SIIP executive teams,
comprised of faculty experienced in evidence-based educational methods, facilitate the
development and implementation of reforms. This model of collaborative development provides
avenues to secure faculty buy-in, organically spread effective practices, facilitate evaluation, and
provide just-in-time training for faculty. Following these guidelines, the first team committed to
this project consisted of two experienced tenured professors in Mechanical Engineering who
frequently teach courses that require or benefit from linear algebra as a prerequisite, one teaching
professor in Computer Science experienced in integrating collaborative learning activities into
lectures, and one junior professor in Mathematics enthusiastic about using modern tools to help
students solve real-world applied problems in the course.

Re-structuring the course content

Our first goal was to re-structure the curriculum of the traditional linear algebra course (which
had 3 lecture hours per week), such that the theoretical components could be taught over 2
lectures per week (Mondays and Wednesdays), and the examples and application components
over 1 lecture per week (Fridays). Instead of presenting the examples and application components
using an expository teaching style, we transformed the third lecture hour into a computational lab
following a flipped classroom style, where students worked on computer-based activities applying
linear algebra concepts to solve real-world examples. These examples were first introduced
during the Monday/Wednesday lectures to highlight how applications are strongly connected with
theoretical concepts, with the intent to create a two-way flow between lecture and labs. The
real-world examples were designed to both motivate students regarding the utility of linear
algebra, and to help them integrate linear algebra concepts in practical settings. It should be
emphasized that the reduction in lecture hours only very minimally reduced the scope of the
course, as the stronger focus on applied aspects allowed for (i) streamlining and excising more
purely mathematical elements such as proofs, and (ii) directly teaching many topics with the help
of computational tools. Table 1 contains the list of topics for the lecture and computational lab for
the new linear algebra course, demonstrating that it retains a comprehensive introduction to
important topics while coordinating closely with the content of the computational exercises. In
addition to the introduction of the computational lab, we also modified the teaching style of the
discussion sections (which continued to be held for 1 hour per week). In the traditional class, the
teaching assistants assigned to discussion sections were expected to solve a set of given problems
from a worksheet on the blackboard, while students copied the solution. According to feedback,
students did not feel they benefited much from these sections, and therefore attendance was low.
For the computational course, the worksheets were re-designed to include more guidance, making
it easier for students to work in teams to solve the problems, while teaching assistants work as
facilitators. Table 2 summarizes the comparison between the Traditional and Computational
course structures.



Lecture 1 Lecture 2 \ Computational Lab
Week 1 Introduction to linear | Echelon forms, Gaussian | Python tutorial
systems, matrices Elimination
Week 2 Vectors, linear combina- | Matrices, matrices- | Working with Vectors:
tion, spans vector multiplication color mixing as linear
combination
Week 3 Matrix multiplications, | elementary matrices, tri- | Matrices as images
matrix transpose angular matrices, LU-
decomposition
Week 4 Inverse of a matrix Solving linear systems | Midterm 1
with LU
Week 5 Vector spaces and sub- | Abstract vector spaces, | Spring systems: solve
spaces, column spaces | linear independence using LU
and nullspaces
Week 6 Basis and dimension The four fundamental | Graphs and Algebraic
subspaces, orthogonal | Graph Theory
complements
Week 7 Coordinates, Orthogonal | Linear transformations, | Data Compression
bases coordinate matrix
Week 8 Determinants, Cofactor | Eigenvalues and Eigen- | Midterm 2
expansion vectors
Week 9 Computing eigenvectors | Properties of eigenvec- | Markov Chains
and eigenvalues tors, Markov matrices
Week 10 | Diagonalization, powers | Matrix exponential, or- | Dynamical systems
of matrices thogonal projection onto
lines
Week 11 Orthogonal projections | Linear Regression Linear Regression
onto subspaces, least
squares
Week 12 | Gram-Schmidt process, | Spectral Theorem Midterm 3
QR decomposition
Week 13 | SVD, low-rank approxi- | pseudo-inverse, least- | SVD and applications
mations squares solutions via
SVD
Week 14 | Principal ~ Component | Review complex num- | Principal =~ Component
Analysis bers, complex linear al- | Analysis
gebra

Table 1: Curriculum of the modernized Computational linear algebra course.

Computer-based assessments

All the homeworks and exams from the Traditional linear algebra course were moved to our
homebrew online assessment platform called PrairieLearn [7], designed to facilitate learning to
mastery. Within the PrairieLearn platform, students are able to practice solving randomized




Traditional Computational ‘

Lecture 3 hours/week 2 hours/week

Discussion 1 hour/week (TAs solving examples | 1 hour/week (students working on
on white board) collaborative activities)

Computational - 1 hour/week

Lab

Credit Hours 3 3

Prerequisites Calculus 3 Calculus 1 and Introduction to Pro-

gramming

Table 2: Comparison between the structure of the original linear algebra course (Traditional) and
the re-designed course (Computational).

problem variants repeatedly until mastery, receiving immediate feedback about their current
mastery level. Figure 2 illustrates how question variants appear on a homework or exam. In this
example, the vectors v and u are randomized for each student, providing a unique version of the
question. In addition, when the question appears in a homework, students can use the “New
variant” button to generate a new version of the question for additional practice.

Computing inner products

Consider the vectors

Calculate their inner product v - w.
vw= [ ] °

Figure 2: Example of question variant from PrairieLearn.

Figure 3 shows an an example for a homework question closely related to content presented
during the computational labs. Note that students are presented with a real application of linear
algebra here, where the solution can be constructed using simple Python tools introduced in the
lab section.

Collaborative learning

Collaborative learning is an evidence-based instructional practice that has been adopted by many
instructors in STEM courses in higher education. Research indicates that engaging students in
collaborative activities is associated with increased student persistence and improved student



Markov matrices: GoT meets 538

On the fictional island of Westeros, the four great houses (House Targaryen, House Stark, House
Baratheon and House Lannister) are in an eternal power struggle for the Iron Throne. You are working for
the Westeros-equivalent of FiveThirtyEight, and it is your task to determine for each house the long term
probability that one of their members sits on the Iron Throne. Nate Silver already told you that the
transition probabilities from one year to the next are given by the following Markov chain:

House Targaryen ) O

0.80

1) Compute the 4 X 4-matrix transition matrix 7" for the above Markov chain. Sort the columns as follows:
House Targaryen, House Stark, House Baratheon, and House Lannister. Store this matrix as
markov_matrix.

2) Compute the steady state vector of this system; that is, find a probability vector which is an
eigenvector of T with eigenvalue 1. Save this as steady_state.

3) Suppose a member of House Targaryen currently sits on the Iron Throne. What is the probability that a
member of House Stark sits on the throne in exactly three years? Save this as prob_stark.

Your code snippet should define the following variables:

Name Type Description
markov_matrix numpy array Transition matrix
steady_state numpy array Steady state vector
prob_stark float Probability

user_code.py

NOUAWN R

Figure 3: Example of a coding question from PrairieLearn.

learning outcomes and retention [8, 9]. Successful and productive collaborations are rarely
guaranteed, but they can be greatly improved by (a) careful design of the task [10, 11], (b)
assignment of team roles [12] and (c) the use of available technologies to both promote

collaborations among students and support the instructors implementing these activities
[13, 14].

(a) Careful design of tasks. We adopted the POGIL (Process Oriented Guided Inquiry
Learning) [15] instructional strategy to build the material of the computational labs, which are



based on a student-centered approach where students work in small teams and the instructors act
as facilitators. As such, all the computational labs include detailed explanation of the problem,
provide guided steps towards the solution, and create opportunities for open discussion among
students. We created the lab exercises using Jupyter notebooks [16], because they offer an
interactive computational environment which combines code, text, figures, mathematical
computation, and plots. The creation of these notebooks for the re-designed course is described in
more detail below.

(b) Assignment of team roles. During the POGIL activities, we encourage students to
self-assign roles among team members, and alternate these roles on a weekly basis. We proposed
three structured roles: the Recorder is assigned to write the team’s answers to problems, the
Manager is responsible for keeping the team on task, and the Reflector ensures nobody in the
group is lagging behind and provides feedback to instructors about the task and team
interactions.

(c) Use of technological tools. When solving a task, group members should build on their
individual knowledge and develop coherent contributions that can be aided by the use of
synchronized tools. The students should continuously discuss and revise their solution approach,
an interactive approach that is facilitated by instant feedback on attempted solutions. To
accomplish this, we have developed a collaborative environment within the PrairieLearn platform
that integrates synchronized Jupyter notebooks with auto-grading features that provide such
immediate feedback.

Jupyter notebooks for interactive work

Computational exercises were developed for collaborative Jupyter notebooks, allowing multiple
students in a group to write Python code in parallel. These notebooks contain information in
various forms, including code snippets, equations, figures, videos, and links. Exercises were
developed with a focus on student collaboration and real-world applications. For example,
singular value decomposition (SVD) and principal component analysis (PCA) were presented as
abstract mathematical techniques in the Traditional course. In the Computational course,
however, SVD was used to perform image compression and PCA was utilized for facial
recognition. Students were thus able to see visual results of these abstract concepts in scenarios
which they encounter in everyday life. Figure 4 illustrates part of the notebook used in week 13 of
the Computational course, where students apply SVD concepts to image compression. Note that
the notebook provides template code for plotting, as well as text explanation and instructions for
code that students need to create. It also provides prompts to encourage the students to discuss
solutions and interesting features of the problem. The notebooks are synchronized in real time to
facilitate the collaborative aspect of the activity.

Classroom setting

Traditional classrooms, typically with slanted-arm chairs arranged auditorium style, are not
suitable for collaborative learning activities: students cannot face each other for fruitful
conversations, and course staff cannot easily reach every group of students [17]. Since large



[Z Launcher X | A SVD and Applications.ipyn X
B + X O [ » m C » Markdown v Python 3 C

1) Image Compression

einstein = plt.imread("einstein.png")[:,:,0]
plt.imshow(einstein, cmap="gray")

<matplotlib. image.AxesImage at 0x7f4a3f748280>

Now that you know how to obtain the singular value decomposition of a matrix, let's try to better understand the meaning of each of the components.
We will continue to use our notation where W; corresponds to the i column of U, and V,T the i row of V7.

Check your answers:

Compute the reduced SVD of the Einstein image above.

Store the reduced decomposition in the usual way: U_einstein is a 2d array whose columns are the left singular vectors, S_einstein is a 1d array whose
entries are the singular values, and Vt_einstein is a 2d array whose rows are the right singular vectors.

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)

The SVD of a matrix can also be written as:

k
A=UZV' = ) cuv’

i=1

We will plot the image obtained from the computation o;u; V,T for a given value of i.
i=o0
plt.figure()

plt.imshow(np.outer(U_einstein[:,i], Vt_einstein[i]) * S_einstein[i], cmap="gray")

Does it look like anything? Try to use different value of i to plot the image using the code provided above. Discuss briefly with your group what you think would
happen when we add these i "layers" together.

Check your answers:
Write a code snippet that adds the first 5 images generated from the outer products o’;u,v,r fori € {0...4}.
Store this image as the 2d array M.

Hint: Recall that a column vector multiplied by a row vector results in a matrix. When each u; and v,T is stored as a 1d array, use numpy.outer to enact this outer
product.

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)
num_images = 5 # number of images to add

Plot the image resulting from this summation using plt.imshow(M, cmap="gray") .
plt.imshow(M, cmap="gray")

We get an image that looks somewhat like our original starting image. We can think of the SVD as breaking up our data into different "layers" or "parts" that get
added together, and the o; component determines how much of each component we add. Here the matrix M is an approximation of the original matrix einstein .

Answer this: What is the rank of the approximated matrix that generates the image above? Think about the definition of matrix rank that you learned in class. You

don't need to do any computation to get this result!

Figure 4: Example of an interactive Jupyter notebook, providing insight into image compression
through singular value decoposition.

classrooms with flexible furniture are not always available, the computational lab was split into
smaller sections offered on the same day, but at different times, depending on the enrollment
numbers. Due to the pandemic-induced change to online learning in Fall 2020, we conducted the
computational labs via Zoom using breakout rooms for individual student groups (for more
detailed information refer to the timeline in Section ).



Introduction of undergraduate course staff

Embedding collaborative problem solving activities within the computational lab classes required
a large number of teaching staff to be involved in the courses as group work facilitators. Based on
our experience teaching engineering courses that include collaborative learning components, we
adopted a ratio of 1 course staff per 20 students for the computational lab sections. Historically,
the Mathematics department assigned TAs for the Traditional linear algebra course following a
ratio of 1 TA per 4 discussion section, which roughly corresponds to 1 TA per 100 students. In
order to increase the number of staff without a substantial increase in the budget, we introduced
the hiring of undergraduate course staff to assist with the flipped-classroom lectures and office
hours, following a similar approach that is widely used by courses in the Grainger College of
Engineering. Hence, each section of the computational lab is staffed by two graduate teaching
assistants (TA) and multiple undergraduate course assistants (CA), depending on the number of
students assigned for that section. The CAs are selected from the pool of students that took the
class in prior semesters and showed outstanding potential, not only based on grades, but also
classroom participation and peer interactions. This model has been shown to be extremely
successful, benefiting all involved—the instructors, TAs, CAs, and the students.

Results

Project milestones

Table 3 summarizes the timeline and milestones achieved in this project. This section provides the
most relevant aspects of course development each semester, and how we adapted the course based
on feedback and the shift to online learning due to COVID-19. The Computational course needed
to first be introduced as an alternative to the Traditional course to allow for a smooth transition as
the course position in the curriculum changed from upper-level (Traditional) to early instruction
(Computational). As a general strategy, we aimed to introduce the Computational class on a small
scale first and then grow it, opening larger enrollment numbers to it semester to semester.

This project started in Fall 2019, with the re-structuring of the linear algebra curriculum as
depicted in Tables 1-2 and the development of the first five Jupyter notebooks. The Spring 2020
semester saw the creation of a pilot course offered to honors students only. This pilot course was
taken in parallel with the Traditional course for an additional 1 credit hour, meeting for one hour
per week and offering exclusively the additional computational components. Enrollment was 24
students, split into groups of 4-5 for collaborative learning. The class was assigned to a flexible
classroom with round tables that could accommodate up to 8 students, and each table had a
dedicated computer monitor. For the collaborative notebooks, which were initially hosted on
CoCalc [18], students were encouraged to only have one or two members actually writing code,
one projecting the content to the table monitor, while the entire group discussed how to solve the
problem. This helped prevent groups from simply "splitting" the notebook amongst themselves,
defeating the point of a collaborative environment. Of the 14 sessions of this pilot course, 9 were
reserved for the collaborative notebooks while the rest were dedicated to a project, where students
would propose their own application of linear algebra and present it to their peers. Examples of
final projects included image classifiers and stock market predictors. Due to the restrictions
imposed by the COVID-19 pandemic, the course moved to a fully online format midway through



’ Semester \ Milestones \ Trad #s \ Comp #s

Fall 2019 Curriculum re-design and development of [Python | 812 -
notebooks for 5 computational lab assignments

Spring 2020 | Pilot Honors section; introduction of group work | 791 24
in discussion sections of the Traditional course
Fall 2020 First offering of the Computational course as a | 513 253

special section of the Traditional course; develop-
ment of homework and exam questions associated
with lab content

Spring 2021 | Second offering of the Computational course as | 456 420
a special section of the Traditional course; added
auto-grading feature to IPython notebooks; con-
tinue development of homework and exam ques-
tions; added new instructor

Fall 2021 First offering of the Computational course under | 359 568
the new rubric; development of training material
for sustainability

Spring 2022 | New course staff using training material 282 1203

Table 3: Project timeline and milestones of implementation, and enrollment numbers for the Tra-
ditional and Computational courses.

the semester. Students attended class through Zoom and worked with their teams using the
breakout room feature. In parallel with the introduction of this pilot course, the discussion
sections of the Traditional class were re-structured to follow a group format, as explained in
Section .

At the end of Spring 2020, we surveyed the students in the Traditional linear algebra course, to
collect information about how they felt regarding the use of computational tools in the class. Out
of the 335 students that submitted the survey, 27% reported they were not familiar with the
Python programming language. The results indicated that over half the students would like a
computational lab component associated with the class, including stronger emphasis on
real-world applications. Indeed, 70% of the students indicated that a closer integration of
computational tools with the course content would make the class more useful to students, with
another 20% reporting neutral with respect to that statement. These results were very encouraging
and supported the course changes we implemented in the following semester.

In the Fall 2020 semester, we created a special section of the Traditional linear algebra course
introducing the full content of the Computational course, after using the summer of 2020 to
develop additional exercises to hold computational labs for the entire semester. This special
section already followed the newly developed curriculum described in Tables 1-2, although it still
used the old course rubric. This approach was necessary since the process of creating a new
course can take several semesters, but creating a new section of an existing course did not require
any special approval. While the newly approved Computational course would have an
Introduction to Programming class as a prerequisite, such a requirement was not in place for the



Traditional class. Therefore, we also made sure to develop a Python tutorial as the computational
lab topic of week 1 (see Table 1).

In Fall 2020, the registration increased tenfold to 250 students, and several students from the Fall
2019 pilot course were recruited to act as course assistants. The existing notebooks were
improved using feedback from the previous semester and two additional notebooks were created
in place of the final project. The class also remained fully online, delivered synchronously via
Zoom. Student groups were assigned to breakout rooms, where they were encouraged to share
their screen and work collaboratively with their peers. In addition to Zoom, an online queue
system was used to moderate in-class questions (Fig. 5). Students were able to post a question
indicating the breakout room number they were meeting in, allowing the course staff to move
between these virtual rooms very efficiently.

® Zoom

A Disable notifications [ ‘ Queue staff message z ~
When entering the queue, please specify your Zoom breakout room number in the "Location" field.

Show staff message © Please only enter the queue if you are a student in the lab which is currently running. If you have questions after your lab is over, please
This affects anyone using this queue post on Campuswire or visit office hours.

On-Duty Staff

son (D
Abb
s« (D ’ et

23 - 5 minutes ago

New question v

cnvistian (D Beig anwered by ion
Ananya _ Finish Answering Stop Answering
Group 13 - 3 minutes ago

room 36 - 3 minutes ago
pseudo-inverse

Interrupt

Being answered by Nishant

Victol
Room 17 - 2 minutes ago
Finding an inverse

Interrupt

Figure 5: Screenshot of the queue online application that allows students to post questions and
specify their location (in a physical or virtual room) such that course staff can provide help more
efficiently during class activities and office hours.

In Spring 2021, the new course became fully integrated with PrairieLearn, hosting all assessments
such as computational labs, homeworks, and exams. This transition was possible after the
implementation of new features to PrairieLearn that allowed for shared group assignments and the
use of Jupyter notebooks. In addition, we added auto-grading to all Jupyter notebooks, providing
groups with immediate feedback during the computational labs. Figure 4 illustrates an example of
a notebook cell marked with #grade (enter your code in this cell - DO NOT DELETE THIS
LINE), indicating to students that the auto-grader will evaluate the contents of that cell, and check
against the correct answer. Students instantly receive feedback from the auto-grader, indicating if



Submitted answer 2 | partially correct: 4%

Score: 0.33/8 (4.12%)
Test Results

X [0.33/1] Testing matrix U, S, Vt of the Einstein image ~
Max points: 1

Earned points: 0.33

Message

'U_einstein' looks good

'S_einstein' does not have correct data type--got: 'int64', expected: 'float32'
'Vt_einstein' does not have correct shape--got: '(9@, 90)', expected: '(83, 90)'

X [0/1] Testing image M v
X [0/1] Testing image M_all v
X [0/1] Testing matrix A that fits the polynomial v
X [0/1] Testing vector z v

Figure 6: Screenshot of auto-grader evaluation and feedback regarding a submitted solution.

their answer is correct or not. Figure 6 shows an example of the feedback after a student
submission. The switch to PrairieLearn also allowed groups to “officially”” assign roles to each
member within the system. In the previous semester, the roles of Recorder, Manager and
Reflector were self-assigned within a group, but these assignments were not tracked by course
staff, and hence many groups did not adhere to the roles.

In Fall 2021, we had the first offering of the Computational linear algebra course under a separate
approved rubric at large scale with over 560 students enrolled across two lecture sections and 3
computational labs. The experienced teaching assistants developed a documentation of class
operations for ease of training of new CAs and TAs, and to ensure the sustainability of the course
in future offerings. This documentation was successfully used for the first time by new teaching
staff taking over in Spring 2022.

Impact on engineering and science programs

Over the last three semesters, all departments in the Grainger College of Engineering, with the
exception of one small program, have switched from requiring the Traditional course to the new
Computational one. Moreover, some programs that did not require the Traditional linear algebra
as part of the curriculum are now in the process of adding the Computational linear algebra course
to their curriculum (for example, Physics, Electrical and Computer Engineering). The success of
this project relies on the effective use of Communities of Practice, and the continuous
involvement of this team with each departmental administration, to make sure the implemented
changes would positively impact the students from different programs.



The Computational course was approved as a new class together with the prerequisite of an
Introduction to Programming course. This provision anchors the new class in an important slot
within the overall engineering and science education of students in many departments. In
particular, it now serves as a first introduction to real-world applications of computational tools,
reinforcing the usefulness of elementary programming skills.

Enrollment data

The success of the Computational course is illustrated by its rapid growth in student enrollment
over the last three years. Table 3 as well as Figure 1 show the enrollment numbers for both
Traditional and Computational courses, as well as the total number of students taking either class.
Note that the increase of the enrollment in the Computational course is not solely a result of
students moving from one course to the other, but also the absorption of new students from
programs that are now either requiring or suggesting the new course to students (there is no
overall increase in undergraduate admissions that would explain the increase of the total). From
Fall 2021 to Spring 2022, course enrollment jumped by over 100%, supported by an increase of
course staff, especially by a matched increase in the number of course assistants, crucially
important to uphold effective group learning in the computational lab sections. The newly
developed class is already the default linear algebra class for the majority of departments in the
Grainger College of Engineering, and no linear algebra class has attracted a larger proportion of
students before.

Survey data

(a) Feedback from students in the Computational course. Survey data were collected from
students at the end of each semester’s course offering. For the Computational linear algebra
course, the survey was adapted to include specific questions regarding the computational
assignments and group interactions. Figure 7 displays a sample of the survey results. The survey
questions used a Likert scale with ratings from 1 to 5, where 1 indicates that a student Strongly
Disagrees with the statement, and a 5 indicates that a student Strongly Agrees with the statement.

Almost 50% of the students think that the computational activities help with the overall
understanding of the course content presented in the lectures (survey answers of rating 4 or
above). We believe that some students still find it difficult to correlate theory with application,
possibly explaining why this number is not higher. In future studies, we will use log data from
PrairieLearn to find if there are correlations between student performance in the theoretical and
computational components of the course. A substantial proportion of students believe the course
helped them develop Python skills, and that linear algebra is an important tool for practical
applications (61% and 80%, respectively). These results are evidence that the newly developed
class is perceived as helpful, useful, and practically important by the student population. They
also highlight the importance of the use of computational tools in introductory engineering
courses.

When combining the data from the three semesters, we find that 16% of the students think their
team did not work well together in the computational labs (survey answers rating 2 or below). If
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Figure 7: Combined survey results from students in the Computational courses of Fall 2020 up to
and including Fall 2021 (total number of responses: 475). The survey uses a Likert scale with rat-
ings from 1 (Strongly disagree) to 5 (Strongly agree). The individual trends for all three semesters
were very similar, so that the combined results provide a more statistically sound representation of
the data.

we look at the data from each semester, the percentage of students that believe their groups did
not work well together was 22% in Fall 2020, 16% in Spring 2021 and 12% in Fall 2021. This
decrease can be potentially explained by the adoption of PrairieLearn for the group assessments,
providing more guidance to define roles and the ability to check answers with immediate
feedback. Another factor contributing to the improvement could be the increased experience of
teaching staff in facilitating group work.

(b) Comparison of Traditional and Computational courses regarding group work. One of
the survey questions asked students to "describe their attitude towards collaborative learning".
This question appears in the surveys for both Traditional and Computational courses, since both
of them included group activities in the discussion sections. In Spring 2020, 20% of the students
in the Traditional course indicated they did not like working in groups. Starting from Fall 2020,
the same question was asked to students in the Computational course, and the percentage of
students that did not like working in groups was 12% in Fall 2020, 11% in Spring 2021 and 12%
in Fall 2021. We believe this increase in satisfaction from students in the Computational course
can be explained by these students being exposed, through the computational labs, to the use of
facilitation tools such as group roles, synchronized online tools, and auto-grading systems. This
illustrates that the introduction of computational components in an organic collaborative learning
scenario benefits the general comfort level of students with working in a group.

Conclusions and Outlook

The ultimate goal of the project described here has been to ensure that students taking the
Computational course are more knowledgeable, more confident in their mastery of linear algebra
and computational tools, and better prepared for subsequent courses in their curricula. In this
paper, we present our approach to re-design a linear algebra course with a focus on incorporating



computational exercises that demonstrate the solution of “real-world” applied problems. The use
of modern collaborative and interactive learning techniques is an integral part of the approach. A
qualitative analysis based on survey results reveals a positive impact of the course re-design on
the ability of students to work together in teams, as well as on their aptitude to use Python to
solve linear algebra problems. Importantly, through taking the modernized class, students have
overwhelmingly understood the usefulness of linear algebra in practical applications.

As this project draws to its completion with outstanding success in enrollment and adoption of the
new class by many departments, our team has also worked to ensure a sustainable trajectory of the
remodeled course. The Department of Mathematics has enthusiastically adopted the new course
structure and teaching techniques, and will continue to offer the class with excellence and
appropriate staffing. We have developed training material to guide and support new instructors,
TAs and CAs that join the course staff.

A future goal is to assess the impact of the modernized class on student performance
quantitatively. To this end, we have access to log data from PrairieLearn indicating the degree to
which students are achieving specific learning goals for a linear algebra course. An analysis of
this data set comparing performance in the Computational course with the Traditional course will
be documented in a future publication to provide more fine-grained insight into specific benefits
of the new course organization. Furthermore, a future longitudinal study will analyze the impact
of incorporating computational tools in linear algebra on student performance in courses
downstream from linear algebra. Overall, such data analysis is a rare opportunity to draw
meaningful comparisons between student learning in classes that differ only by well-defined
teaching components, and provide substantial statistics at the same time.

Due to the success of this project, other programs within the Grainger College of Engineering and
beyond became interested in implementing similar activities and pedagogical changes in some of
their classes. In particular, the adoption of PrairieLearn for collaborative learning activities and
the use of computational tools can be flexibly applied to various courses, although care must be
taken to consider the specific needs of each individual class. A subset of the professors initially
involved in this project have received another SIIP grant to incorporate computational tools in the
Differential Equations course, an on-going project currently in its first year. Such initiatives are
aligned with general educational directions in the College of Engineering, emphasizing
computational literacy in undergraduate students as well as the students’ ability to work
productively in groups. The approach presented here provides a blueprint for larger-scale changes
that benefit math and engineering education as a whole.
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