Gradient-based optimization of sparse numerical methods with automatic differentiation

21st Copper Mountain Conference On Multigrid Methods

Nicolas Nytko¹ Ali Taghibakhshi¹ Tareq Uz Zaman² Scott MacLachlan² Luke Olson¹ Matthew West¹ April 17, 2023

¹University of Illinois **at** Urbana-Champaign

²Memorial University of Newfoundland

Optimization Problems in Numerics

- Sparse Approximate Inverses
- Optimal Boundary Conditions for Schwarz Preconditioners¹
- Coefficients for Jacobi Method

¹Taghibakhshi et al., "Learning Interface Conditions in Domain Decomposition Solvers". NeurIPS 2022. (Figure is from paper)

• Define loss/objective function,

$$\arg\min_{\theta} f(\theta). \tag{1}$$

- How to compute minimum?
- Take gradient, $\nabla_{\theta} f$, run gradient descent steps

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} f. \tag{2}$$

• Simple in theory...

- How do we take derivatives of complex function?
- Assume they are compositions of simpler functions and apply chain-rule

$$f(\mathbf{x}, \mathbf{y}) = 2\sin\left(\mathbf{x}^T \mathbf{y}\right)$$

$$\frac{df}{d\mathbf{x}} = 2\frac{d\sin(z)}{dz}\frac{d(\mathbf{x}^T\mathbf{y})}{\mathbf{x}} = 2\cos\left(\mathbf{x}^T\mathbf{y}\right)\mathbf{y}$$

But I don't want to take a derivative by hand

- $\bullet\,$ Automatic differentiation has been around since early 50's 2
- Perform original calculation as normal, record intermediate operations (forward pass)

²John F. Nolan. "Analytical differentiation on a digital computer". Massachusetts Institute of Technology, 1953.

Automatic Differentiation

- Flow gradient *backwards* by multiplying by transpose Jacobian through each node
- This is called reverse-mode, or adjoint mode differentiation
- Implemented in big frameworks: PyTorch, Tensorflow, etc.

- Breadth of literature on the forward mode for sparse matrix ${\rm ops}^{345}$
 - Matrix matrix products, direct solves, etc.
- What about differentiation through sparse matrix expressions?
- What should that entail?

³Bank et al., "Sparse matrix multiplication package (SMMP)". Advances in Computational Mathematics, 1993

 $^{^4 \}text{Demmel}$ et al., "A Supernodal Approach to Sparse Pivoting". SIAM Journal on Matrix Analysis and Applications, 1999

⁵Dalton et al., "Optimizing Sparse Matrix-Matrix Multiplication for the GPU". ACM Transactions on Mathematical Software, 2015

Differentiation through Sparse Matrices?

- Large frameworks don't fully support sparse inputs
- Autogradient on dense matrices gives dense gradient
- Not scalable, want to keep things sparse
- Ideally, differentiate wrt nozeros of sparse input

- No general support exists (special cases for Graph-Nets, etc.), so we rolled our own
- Framework for PyTorch for general CSR support with differentiation
- Supports expressions that consist of primitives like:
 - SpMV, SpSpMM, SpDMM
 - Triangular solve, direct solve
 - Analogous to SciPy's sparse or CuPy with support for autodiff
- CUDA support for parallelization
- https://github.com/nicknytko/numml

Consider Jacobi relaxation, we'll use a per-entry weight Ω ,

$$\mathbf{x} \leftarrow \mathbf{x} + \Omega \mathbf{D}^{-1} (\mathbf{b} - \mathbf{A} \mathbf{x}).$$
 (3)

How do we get Ω ? Optimize over error propagator,

$$\arg\min_{\mathbf{\Omega}} \|\mathbf{I} - \mathbf{\Omega}\mathbf{D}^{-1}\mathbf{A}\|_F^2.$$
(4)

Run through optimizer to get entries of Ω


```
import numml.sparse as sp
   import torch
3
4 N = 16
5 A = sp.eye(N) * 2 - sp.eye(N, k=-1) - sp.eye(N, k=1)
6 Dinv = sp.diag(1./A.diagonal())
7 I = sp.eye(N)
   Omega = sp.eye(N)
10 Omega.requires_grad = True
   optimizer = torch.optim.Adam([Omega.data], lr=0.01)
  for i in range(50):
   optimizer.zero_grad()
15 loss = ((I - Omega @ Dinv @ A) ** 2.).sum()
16 loss.backward()
17 optimizer.step()
```

For 1-D Poisson with Dirichlet conditions, obtain $\omega_i\approx\frac{2}{3}$ on interior, higher on boundary

Have scalable forward and backward pass on both CPU and GPU

Based on work by Taghibakhshi et al.⁶

Want to find an additive overlapping Schwarz preconditioner,

$$\mathbf{A}^{-1} \approx \mathbf{M}^{(\theta)} = \sum_{i=1}^{S} \tilde{\mathbf{R}}_{i}^{T} \left(\mathbf{R}_{i} \mathbf{A} \mathbf{R}_{i}^{T} + \mathbf{L}_{i}^{(\theta)} \right)^{-1} \mathbf{R}_{i}, \qquad (5)$$

where $\mathbf{L}_i^{(heta)}$ is the output of a graph neural network

⁶Presenting on Tuesday's session, go check it out.

$$\mathbf{A}^{-1} \approx \mathbf{M}^{(\theta)} = \sum_{i=1}^{S} \tilde{\mathbf{R}}_{i}^{T} \left(\mathbf{R}_{i} \mathbf{A} \mathbf{R}_{i}^{T} + \mathbf{L}_{i}^{(\theta)} \right)^{-1} \mathbf{R}_{i}, \qquad (5)$$

Optimize stochastic approximation to error propagator,

$$\ell = \max_{\mathbf{x} \in \mathcal{X}} \left\| \left(\mathbf{I} - \mathbf{M}^{(\theta)} \mathbf{A} \right) \mathbf{x} \right\|_{2}, \tag{6}$$

for random unit vectors ${\cal X}$

		N = 1,521	N = 2,916	N = 5,929	N = 8,100
Sparse	CPU GPU	$3.060 \\ 1.516$	5.088 1.817	$12.906 \\ 3.106$	$18.321 \\ 3.979$
Dense	CPU GPU	$2.274 \\ 0.971$	$15.126 \\ 2.262$	-	-

(- ran out of memory)

For an algebraic multigrid solver with levels

$$\mathbf{A}^{(l)} \leq \mathbf{A}^{(l-1)} \leq \cdots \leq \mathbf{A}^{(1)},$$

can we find an optimal relaxation scheme at each level? Find sparse $\mathbf{M}^{(i)}$ for each level with same sparsity as $\mathbf{A}^{(i)}$,

$$\mathbf{x} \leftarrow \mathbf{M}^{(i)} (\mathbf{b} - \mathbf{A}^{(i)} \mathbf{x}),$$
 (7)

that complements coarse-grid correction

$$\arg\min_{\mathbf{M}^{(...)}} \|\mathbf{G}_{\mathsf{M}\mathsf{G}}\| \tag{8}$$

For full multigrid error propagator \mathbf{G}_{MG}

Claim: one iteration of $\mathbf{A}\mathbf{x}=\mathbf{0}$ with AMG using guess \mathbf{z} is $\mathbf{G}_{\mathsf{MG}}\mathbf{z}$

$$\arg\min_{\mathbf{M}^{(...)}} \|\mathbf{G}_{\mathsf{MG}}\mathbf{z}\|,\tag{9}$$

for nonzero unit guess \mathbf{z}

Conclusions

- We have a new, general framework for sparse optimization with automatic differentiation
- Huge number of optimization problems to explore
 - Sparse relaxation
 - Learning Schwarz Preconditioners
 - Optimizing Heavyball to get CG?
 - Lets chat about ideas afterwards
- https://github.com/nicknytko/numml

Future:

• Scale up to multi-GPU and multi-node computation

Recirculating Flow Setup

$$\frac{\partial u}{\partial t} - \varepsilon \nabla^2 u = \nabla \cdot (\mathbf{w}u) = 0, \tag{10}$$

$$\mathbf{w}(x,y) = \begin{bmatrix} 2y(1-x^2) & -2x(1-y^2) \end{bmatrix}^T.$$
 (11)

On unit square domain, Dirichlet condition: 1 on right boundary, 0 elsewhere. $\varepsilon=0.005.$