Gradient-based optimization of sparse numerical methods with automatic differentiation

21st Copper Mountain Conference On Multigrid Methods
Nicolas Nytko ${ }^{1} \quad$ Ali Taghibakhshi ${ }^{1}$ Tareq Uz Zaman ${ }^{2}$ Scott
MacLachlan ${ }^{2}$ Luke Olson ${ }^{1} \quad$ Matthew West 1
April 17, 2023
${ }^{1}$ University of Illinois at Urbana-Champaign
${ }^{2}$ Memorial University of Newfoundland

Optimization Problems in Numerics

- Sparse Approximate Inverses
- Optimal Boundary Conditions for Schwarz Preconditioners ${ }^{1}$
- Coefficients for Jacobi Method

Optimized
Schwarz DoFs

[^0]
Notation, Stating the optimization problem

- Define loss/objective function,

$$
\begin{equation*}
\arg \min _{\theta} f(\theta) \tag{1}
\end{equation*}
$$

- How to compute minimum?
- Take gradient, $\nabla_{\theta} f$, run gradient descent steps

$$
\begin{equation*}
\theta \leftarrow \theta-\alpha \nabla_{\theta} f . \tag{2}
\end{equation*}
$$

- Simple in theory...

Taking the gradient

- How do we take derivatives of complex function?
- Assume they are compositions of simpler functions and apply chain-rule

$$
\begin{gathered}
f(\mathbf{x}, \mathbf{y})=2 \sin \left(\mathbf{x}^{T} \mathbf{y}\right) \\
\frac{d f}{d \mathbf{x}}=2 \frac{d \sin (z)}{d z} \frac{d\left(\mathbf{x}^{T} \mathbf{y}\right)}{\mathbf{x}}=2 \cos \left(\mathbf{x}^{T} \mathbf{y}\right) \mathbf{y}
\end{gathered}
$$

But I don't want to take a derivative by hand

- Automatic differentiation has been around since early 50 's ${ }^{2}$
- Perform original calculation as normal, record intermediate operations (forward pass)

[^1]
Automatic Differentiation

- Flow gradient backwards by multiplying by transpose Jacobian through each node
- This is called reverse-mode, or adjoint mode differentiation
- Implemented in big frameworks: PyTorch, Tensorflow, etc.

Detour: Sparse Matrix Operations

- Breadth of literature on the forward mode for sparse matrix ops ${ }^{345}$
- Matrix matrix products, direct solves, etc.
- What about differentiation through sparse matrix expressions?
- What should that entail?

[^2]
Differentiation through Sparse Matrices?

- Large frameworks don't fully support sparse inputs
- Autogradient on dense matrices gives dense gradient
- Not scalable, want to keep things sparse
- Ideally, differentiate wrt nozeros of sparse input

Differentiable Sparse Kernels

- No general support exists (special cases for Graph-Nets, etc.), so we rolled our own
- Framework for PyTorch for general CSR support with differentiation
- Supports expressions that consist of primitives like:
- SpMV, SpSpMM, SpDMM
- Triangular solve, direct solve
- Analogous to SciPy's sparse or CuPy with support for autodiff
- CUDA support for parallelization
- https://github.com/nicknytko/numml

Mini-example of Sparse Optimization

Consider Jacobi relaxation, we'll use a per-entry weight Ω,

$$
\begin{equation*}
\mathrm{x} \leftarrow \mathrm{x}+\Omega \mathrm{D}^{-1}(\mathrm{~b}-\mathbf{A x}) \tag{3}
\end{equation*}
$$

How do we get Ω ? Optimize over error propagator,

$$
\begin{equation*}
\arg \min _{\Omega}\left\|\mathbf{I}-\boldsymbol{\Omega} \mathbf{D}^{-1} \mathbf{A}\right\|_{F}^{2} \tag{4}
\end{equation*}
$$

Run through optimizer to get entries of Ω


```
    1 import numml.sparse as sp
    2 import torch
    3
    4 N = 16
    A = sp.eye(N) * 2 - sp.eye(N,k=-1) - sp.eye(N,k=1)
6 ~ D i n v ~ = ~ s p . d i a g ( 1 . / A . d i a g o n a l ( ) ) ~
    I = sp.eye(N)
8
9 Omega = sp.eye(N)
10 Omega.requires_grad = True
11 optimizer = torch.optim.Adam([Omega.data], lr=0.01)
12
13 for i in range(50):
14 optimizer.zero_grad()
15 loss = ((I - Omega @ Dinv @ A) ** 2.).sum()
16 loss.backward()
1 7 \text { optimizer.step()}
```

For 1-D Poisson with Dirichlet conditions, obtain $\omega_{i} \approx \frac{2}{3}$ on interior, higher on boundary

Timings, Scalings

Have scalable forward and backward pass on both CPU and GPU

Boundary Conditions for Schwarz Preconditioners

Based on work by Taghibakhshi et al. ${ }^{6}$
Want to find an additive overlapping Schwarz preconditioner,

$$
\begin{equation*}
\mathbf{A}^{-1} \approx \mathbf{M}^{(\theta)}=\sum_{i=1}^{S} \tilde{\mathbf{R}}_{i}^{T}\left(\mathbf{R}_{i} \mathbf{A} \mathbf{R}_{i}^{T}+\mathbf{L}_{i}^{(\theta)}\right)^{-1} \mathbf{R}_{i} \tag{5}
\end{equation*}
$$

where $\mathbf{L}_{i}^{(\theta)}$ is the output of a graph neural network

[^3]\[

$$
\begin{equation*}
\mathbf{A}^{-1} \approx \mathbf{M}^{(\theta)}=\sum_{i=1}^{S} \tilde{\mathbf{R}}_{i}^{T}\left(\mathbf{R}_{i} \mathbf{A} \mathbf{R}_{i}^{T}+\mathbf{L}_{i}^{(\theta)}\right)^{-1} \mathbf{R}_{i} \tag{5}
\end{equation*}
$$

\]

Optimize stochastic approximation to error propagator,

$$
\begin{equation*}
\ell=\max _{\mathbf{x} \in \mathcal{X}}\left\|\left(\mathbf{I}-\mathbf{M}^{(\theta)} \mathbf{A}\right) \mathbf{x}\right\|_{2} \tag{6}
\end{equation*}
$$

for random unit vectors \mathcal{X}

		$N=1,521$	$N=2,916$	$N=5,929$	$N=8,100$
Sparse	CPU	3.060	5.088	12.906	18.321
	GPU	1.516	1.817	3.106	3.979
Dense	CPU	2.274	15.126	-	-
	GPU	0.971	2.262	-	-

(- ran out of memory)

Sparse Relaxation for Multigrid

For an algebraic multigrid solver with levels

$$
\mathbf{A}^{(l)} \leq \mathbf{A}^{(l-1)} \leq \cdots \leq \mathbf{A}^{(1)}
$$

can we find an optimal relaxation scheme at each level?
Find sparse $\mathbf{M}^{(i)}$ for each level with same sparsity as $\mathbf{A}^{(i)}$,

$$
\begin{equation*}
\mathbf{x} \leftarrow \mathbf{M}^{(i)}\left(\mathbf{b}-\mathbf{A}^{(i)} \mathbf{x}\right) \tag{7}
\end{equation*}
$$

that complements coarse-grid correction

$$
\begin{equation*}
\arg \min _{\left.\mathbf{M}^{(} \ldots\right)}\left\|\mathbf{G}_{\mathrm{MG}}\right\| \tag{8}
\end{equation*}
$$

For full multigrid error propagator \mathbf{G}_{MG}

Claim: one iteration of $\mathbf{A x}=\mathbf{0}$ with AMG using guess \mathbf{z} is $\mathbf{G}_{\mathrm{MG}} \mathbf{z}$

$$
\begin{equation*}
\arg \min _{\mathbf{M}^{(}(\ldots)}\left\|\mathbf{G}_{\mathbf{M G}} \mathbf{z}\right\|, \tag{9}
\end{equation*}
$$

for nonzero unit guess z

Conclusions

- We have a new, general framework for sparse optimization with automatic differentiation
- Huge number of optimization problems to explore
- Sparse relaxation
- Learning Schwarz Preconditioners
- Optimizing Heavyball to get CG?
- Lets chat about ideas afterwards
- https://github.com/nicknytko/numml

Future:

- Scale up to multi-GPU and multi-node computation

Recirculating Flow Setup

$$
\begin{align*}
\frac{\partial u}{\partial t} & -\varepsilon \nabla^{2} u=\nabla \cdot(\mathbf{w} u)=0 \tag{10}\\
\mathbf{w}(x, y) & =\left[\begin{array}{ll}
2 y\left(1-x^{2}\right) & -2 x\left(1-y^{2}\right)
\end{array}\right]^{T} . \tag{11}
\end{align*}
$$

On unit square domain, Dirichlet condition: 1 on right boundary, 0 elsewhere. $\varepsilon=0.005$.

[^0]: ${ }^{1}$ Taghibakhshi et al., "Learning Interface Conditions in Domain Decomposition Solvers". NeurIPS 2022. (Figure is from paper)

[^1]: ${ }^{2}$ John F. Nolan. "Analytical differentiation on a digital computer". Massachusetts Institute of Technology, 1953.

[^2]: ${ }^{3}$ Bank et al., "Sparse matrix multiplication package (SMMP)". Advances in Computational Mathematics, 1993
 ${ }^{4}$ Demmel et al., "A Supernodal Approach to Sparse Pivoting". SIAM Journal on Matrix Analysis and Applications, 1999
 ${ }^{5}$ Dalton et al., "Optimizing Sparse Matrix-Matrix Multiplication for the GPU". ACM Transactions on Mathematical Software, 2015

[^3]: ${ }^{6}$ Presenting on Tuesday's session, go check it out.

