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Introduction

AMG methods can be fast, robust methods for solving sparse linear
systems

Convergence is dependent on choice of interpolation/restriction, P
and R

For example: smoothed aggregation depends on aggregation, candidate
vectors, interpolation smoothing

For class of problems, can we learn this choice of aggregation and
smoothing operator?

How? Create an ML agent composed of several graph neural networks
that outputs aggregation and smoothing to form final interpolation.

Focus on Isotropic and anisotropic diffusion problems in 2D
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Diffusion Problem

Consider 2D diffusion with homogeneous Dirichlet conditions,

−∇ · (D∇u) = f, u (∂Ω) = 0,

D =

[
cos θ − sin θ
sin θ cos θ

] [
1

ε

] [
cos θ − sin θ
sin θ cos θ

]T
.

P1 finite elements; fixed rotation θ and fixed anisotropy ε in
y-direction

Obtain mesh through refining random convex hull
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Dataset Generation

Create two datasets of anisotropic and isotropic-only problems with
testing and training split:

1000 training problems
250 testing problems

Problems have between 50 and 500 degrees of freedom in resulting
system.

For isotropic, θ = 0; ε = 1.

For anisotropic, θ ∼ U (0, 2π); log ε ∼ U (−5, 5).
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Training Loss

Start from random guess and solve Ax = 0 to some tolerance with
2-level multigrid solver.

Approximate asymptotic convergence factor from error history of last
several iterations.

µ :=
(∥∥∥e(k)∥∥∥−

∥∥∥e(k−n)
∥∥∥)1/(n−1)

Take average µ over set of data — this creates unsupervised loss of 2-level
V-cycle multigrid solver
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Graphnets in a Nutshell I

Very helpful to think of sparse matrices as graphs.

Let each column of matrix A define a node.

Edge j → i exists if Aij ̸= 0.
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Graphnets in a Nutshell II

Define two useful graphnet operations:

Node convolution

(A,x) → x′

Edge convolution

(A,x) → A′ (∗)

(*) the sparsity pattern of A is preserved.

Will be using TAGConv, MPNN for node convolutions.
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Learning Aggregation I

Want to form coarse-grid through aggregation

Define two networks, Θagg, Θsoc, for outputting aggregate roots and
strength of connection.

Let k := ⌈αn⌉ be number of nodes on coarse grid, for coarsening
factor α.

For Θagg, run node convolutions then replace k largest value nodes
with 1, rest 0. Repeat.

Output of Θagg are roots.

Pass 1 Pass 2 Pass 3 Pass 4
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Learning Aggregation II

Let Θsoc be a series of edge
convolutions that map A to
some strength matrix C:

Connection matrix C has
same edge connections as A.

Run Bellman-Ford with roots
and C to assign each node to
nearest root – every node now
uniquely assigned to aggregate.

Obtain the binary aggregate
assignment matrix, Agg ∈ Rn×k;
Aggij = 1 means node i belongs
to aggregate j.

ML AMG, conv=0.3709
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Learning Interpolation

How do we learn the interpolator P
given Agg?

Add additional binary edge
feature for edges that connect
nodes between different
aggregates.

Let ΘS be network that maps A
and inter-aggregate feature to
smoother, Ŝ.

Form P = ŜAgg — smoothes
columns of Agg. (Or, use Agg to
take linear combinations of Ŝ.)
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Full ML Agent Overview

Overall, Agent composed of three networks: Θagg,Θsoc,ΘS .

Use Θagg to get aggregate roots, Θsoc to get C.

Run graph traversal on roots and C to get assignment matrix,
Agg ∈ Rn×k.

Use ΘS to output smoother, Ŝ.

Finally, define interpolation operator as P := ŜAgg.

ML agent is some function of A and coarsening ratio α, outputs P.
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Training

Gradient information is difficult to pass through full agent. (Networks
are deep, aggregate selection is inherently non-differentiable.)

Turn to genetic evolution strategies for training.

Use following steps to train agent:

Initialize

0.47
0.39

0.42

Evaluate Breed Mutate

Repeating steps (2)-(4) converges population towards an optimally trained
agent without any gradient information.
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Baseline, Lloyd Aggregation

Compare against baseline of randomly selected aggregate roots and
aggregates refined using Lloyd aggregation.
Lloyd aggregation attempts to uniformly space aggregates according
to some strength measure; iteratively re-centers seeds.
Run Bellman-Ford afterwards as in ML to assign nodes to aggregates.
Jacobi smoother on columns of aggregate matrix.

Lloyd seeds + Jacobi, conv=0.5420

Random Seeds

Baseline Lloyd + Jacobi, conv=0.4751

Refinement with Lloyd Aggregation
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Overall Results

Trained one agent on both anisotropic, isotropic problems; α = 0.1.

Convergence factors (lower better) of ML vs baseline, Lloyd on both sets
of problems. ML is competitive with Lloyd on reducing convergence
compared to baseline.

Problem Type Data Set Baseline Lloyd ML
Isotropic Train 0.47 0.42 0.40
Isotropic Test 0.46 0.42 0.39

Anisotropic Train 0.77 0.77 0.75
Anisotropic Test 0.79 0.80 0.77
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Isotropic Results I
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Isotropic Results II

Lloyd Aggregation gives (roughly) evenly-spaced aggregates. ML learns to
give larger aggregates at boundary and higher resolution in middle of mesh.

Lloyd seeds + Jacobi, conv=0.5420

Baseline, conv=0.5420

Baseline Lloyd + Jacobi, conv=0.4751

Lloyd, conv=0.4751

ML AMG, conv=0.3709

ML, conv=0.3709
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Anisotropic Results I
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Anisotropic Results II

Lloyd produces clusters that roughly follow direction of strong anisotropy.
ML does same, though aggregates become interestingly more “normal” in
center of mesh.

θ = 0.48π ε = 0.1771

Lloyd seeds + Jacobi, conv=0.6334

Baseline, conv=0.6334

Baseline Lloyd + Jacobi, conv=0.6936

Lloyd, conv=0.6936

ML AMG, conv=0.5041, theta=0.48 , epsilon=1.711e-01
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Conclusions

Graph networks can be used to learn aggregation and interpolation in
SA.

Gradient-free genetic algorithms actually provide good results for
training networks.

Compared to baseline results, ML method offers improvements
comparable to (and actually slightly better than) Lloyd.

Don’t need to select strength-of-connection for SA, method can learn
something decent.
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Future Directions

Try out some more difficult problems

Look at problems at which conventional AMG does not do so well?

Are we able to reformulate this so that gradient information is
available and is trainable with traditional descent methods?

(Re-cast as reinforcement learning problem, maybe?)

More flexibility to ML agent to pick aggregate and final interpolation.

Agent is limited to selecting aggregate centers and smoother. By
replacing more parts of SA with ML components can we learn deeper
or more optimal interpolation?
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