
A Supervised Learning Approach to Predicting
Multigrid Convergence

Nicolas Nytko

Matthew West, Luke Olson, Scott MacLachlan

March 28, 2021



Introduction

I AMG methods are among fastest today for solving sparse
linear systems

I Optimal setup for AMG can be difficult, and incorrect
parameters could prevent convergence.
I Put careful thought into the problem and selecting relaxation

weights, AMG parameters
I Just try different values and see what works

I For a specific AMG setup, can we predict efficacy ahead of
time?

I Look at predicting rate of convergence for specific Poisson,
Convection-Diffusion problems.



Poisson Problem

I Look at the 1D variable coefficients case w/ homogeneous
Dirichlet conditions

−∇ · (k (x)∇u) = f

Ω = [−1, 1] u (∂Ω) = 0

I Discretized on N = 31 internal points using finite differences,
k (x) is discretized on midpoints to preserve symmetry.

I For arbitrary C/F splitting, can we predict convergence rate
and optimal relaxation weight?



Training Dataset

I For “traditional” machine learning we need a dataset.

I Idea: Run a whole lot of multigrid iterations.

I Run multigrid iterations and record convergence rate and
relaxation weight for randomly generated C/F splittings and
problem setups.



Dataset Generation

I Start from “reference” splittings – evenly spaced coarse points
on grid

I Randomly perturb each reference in several trials, each point
has a set probability of being flipped to opposite value

I Generate variable coefficients with a few random functions,
i.e. cosine wave, random polynomial, noise



Multigrid, CNN

I Take the C/F splittings, run in multigrid solver to find
convergence rate and relaxation weight that maximizes the
former
I Two level V-cycle solver, run for 50 iterations or until error

sufficiently small
I Two rounds Jacobi pre- and post-relaxation

I Ideal 1D AMG interpolation operator: P =

[
−A−1

FFAFC

I

]
I Use the data to train a 1D convolutional network that

predicts convergence, Jacobi relaxation.
I Look at neighboring values of nodes to predict features
I Stack multiple CNN layers followed by fully-connected layer to

force scalar output



CNN Performance

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Convergence Rates

Predicted Values
A diagonal line
Trivial Predictor

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Jacobi Relaxation Weights
Predicted Values
A diagonal line
Trivial Predictor



What we learned: Poisson is too easy!

Let’s try learning a more difficult problem.



Convection-Diffusion Problem
Solve specific problem,

w · ∇u− k∇2u = f

Ω = [−1, 1]2

k = 0.1

w =
[
2y(1− x2) 2x(1− y2)

]
,

discretized as quad finite elements.



Dataset Generation, Convection-Diffusion
I Discretize on a 25× 25 structured grid

I Start from “reference” splittings, all fine, all coarse, AMG
output, etc

I Randomly perturb again in various trials

I Don’t generate coefficient values for now

I Take output and run through 50 iteration multigrid solver to
find convergence rate



Convection-Diffusion Convolution

I 2D structured grid ⇒ train 2D convolutional network to
predict convergence

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Convergence Factor (Testing)
Predicted Values
A diagonal line
Trivial Predictor

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Convergence Factor (Training)
Predicted Values
A diagonal line
Trivial Predictor



CNN to GNN
I Classical convolution techniques work okay on structured,

grid-like inputs
I Very restrictive in terms of mesh data we can use for FEM

solvers
I Take a look at some network architectures that allow for

unstructured data: introduce graph-nets
I Get FEM matrix, convert to graph and try to learn properties

about the system

=⇒



Message-Passing Graph Convolutions

I Many graph convolution implementations, one such is the
Message-Passing Graph layer

I In each layer, nodes learn optimal “messages” to pass via
edges. Each node passes this message to other nodes in its
neighborhood.

I Stacking multiple of these layers approximates traditional
grid-based convolution.

I Run each set of nodal values through small fully-connected
NN, take average for final convergence rate.



Message-Passing Dataset

I Decoupled the neural network from a fixed input size due to
final aggregation step.

I Can have variable-sized input. Now generate and train on a
variably-sized dataset of four mesh sizes:

{15× 15 25× 25 35× 35 50× 50}



Message-Passing Performance

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Convergence Factor (Testing)

0.0 0.2 0.4 0.6 0.8 1.0
Actual

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Convergence Factor (Training)
Predicted Values
A diagonal line
Trivial Predictor



Conclusions

I These AMG features are indeed learnable with supervised
methods.

I Predicting these values becomes more difficult on more
complex problems, domains.

I What else can we learn?



Future Directions

I Try out some more interesting problems:

I Pick between different AMG methods with predictions.

I Use predictions in an optimization routine to find most
convergent C/F splitting.


