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Introduction

I AMG methods are among fastest today for solving sparse
linear systems

I Optimal setup for AMG can be difficult, and incorrect
parameters could prevent convergence.
I Put careful thought into the problem and selecting relaxation

weights, AMG parameters
I Just try different values and see what works

I For a specific AMG setup, can we predict efficacy ahead of
time?

I Look at predicting rate of convergence for specific Poisson,
Convection-Diffusion problems.



Poisson Problem

I Look at the 1D variable coefficients case w/ homogeneous
Dirichlet conditions

−∇ · (k (x)∇u) = f

Ω = [−1, 1] u (∂Ω) = 0

I Discretized on N = 31 internal points using finite differences,
k (x) is discretized on midpoints to preserve symmetry.

I For arbitrary C/F splitting, can we predict convergence rate
and optimal relaxation weight?



Training Dataset

I For “traditional” machine learning we need a dataset.

I Idea: Run a whole lot of multigrid iterations.

I Run multigrid iterations and record convergence rate and
relaxation weight for randomly generated C/F splittings and
problem setups.



Dataset Generation

I Start from “reference” splittings – evenly spaced coarse points
on grid

I Randomly perturb each reference in several trials, each point
has a set probability of being flipped to opposite value

I Generate variable coefficients with a few random functions,
i.e. cosine wave, random polynomial, noise



Multigrid, CNN

I Take the C/F splittings, run in multigrid solver to find
convergence rate and relaxation weight that maximizes the
former
I Two level V-cycle solver, run for 50 iterations or until error

sufficiently small
I Two rounds Jacobi pre- and post-relaxation

I Ideal 1D AMG interpolation operator: P =

[
−A−1

FFAFC

I

]
I Use the data to train a 1D convolutional network that

predicts convergence, Jacobi relaxation.
I Look at neighboring values of nodes to predict features
I Stack multiple CNN layers followed by fully-connected layer to

force scalar output



CNN Performance
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What we learned: Poisson is too easy!

Let’s try learning a more difficult problem.



Convection-Diffusion Problem
Solve specific problem,

w · ∇u− k∇2u = f

Ω = [−1, 1]2

k = 0.1

w =
[
2y(1− x2) 2x(1− y2)

]
,

discretized as quad finite elements.



Dataset Generation, Convection-Diffusion
I Discretize on a 25× 25 structured grid

I Start from “reference” splittings, all fine, all coarse, AMG
output, etc

I Randomly perturb again in various trials

I Don’t generate coefficient values for now

I Take output and run through 50 iteration multigrid solver to
find convergence rate



Convection-Diffusion Convolution

I 2D structured grid ⇒ train 2D convolutional network to
predict convergence
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CNN to GNN
I Classical convolution techniques work okay on structured,

grid-like inputs
I Very restrictive in terms of mesh data we can use for FEM

solvers
I Take a look at some network architectures that allow for

unstructured data: introduce graph-nets
I Get FEM matrix, convert to graph and try to learn properties

about the system

=⇒



Message-Passing Graph Convolutions

I Many graph convolution implementations, one such is the
Message-Passing Graph layer

I In each layer, nodes learn optimal “messages” to pass via
edges. Each node passes this message to other nodes in its
neighborhood.

I Stacking multiple of these layers approximates traditional
grid-based convolution.

I Run each set of nodal values through small fully-connected
NN, take average for final convergence rate.



Message-Passing Dataset

I Decoupled the neural network from a fixed input size due to
final aggregation step.

I Can have variable-sized input. Now generate and train on a
variably-sized dataset of four mesh sizes:

{15× 15 25× 25 35× 35 50× 50}



Message-Passing Performance
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Conclusions

I These AMG features are indeed learnable with supervised
methods.

I Predicting these values becomes more difficult on more
complex problems, domains.

I What else can we learn?



Future Directions

I Try out some more interesting problems:

I Pick between different AMG methods with predictions.

I Use predictions in an optimization routine to find most
convergent C/F splitting.


